Hydrothermal-assisted solid-state reaction synthesis of high ionic conductivity Li1+xAlxTi2-x(PO4)3 ceramic solid electrolytes: The effect of Al3+ doping content

被引:14
作者
He, Shengnan [1 ,2 ]
Xu, Youlong [1 ]
机构
[1] Xi An Jiao Tong Univ, Int Ctr Dielect Res, Minist Educ, Elect Mat Res Lab,Key Lab, 28 Xianning West Rd, Xian 710049, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Shaanxi Engn Res Ctr Adv Energy Mat & Devices, 28 Xianning West Rd, Xian 710049, Shaanxi, Peoples R China
关键词
Solid electrolyte; Hydrothermal-assisted solid-state reaction; Li1+xAlxTi2-x(PO4)(3); Ionic conductivity; Activation energy; NASICON-TYPE ELECTROLYTE; LITHIUM BATTERIES; LI1.3AL0.3TI1.7(PO4)(3); PERFORMANCE; LITI2(PO4)(3); CATHODE; AL2O3; BEHAVIOR; STORAGE; VOLTAGE;
D O I
10.1016/j.ssi.2019.115078
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The importance of developing solid electrolytes for solid-state batteries attracts great interest in Na super ionic conductor (NASICON)-type LiTi2(PO4)(3) for its high ionic conductivity, excellent stability at high potential and great stability in atmosphere. In this study, Al3+-doped LiTi2(PO4)(3) materials with the formula of Li1+xAlxTi2-x(PO4)(3) (x = 0, 0.1, 0.2, 0.3, and 0.4) are successfully prepared by hydrothermal-assisted solid-state reaction (HA-SSR). The influence of Al3+ doping content on the crystal structure, morphology, ionic conductivity, as well as activation energy of Li1+xAlxTi2-x(PO4)(3) is investigated. Al3+-doped LiTi2(PO4)(3) powders with well-organized morphology and homogeneous size distribution are successfully achieved. The solid electrolytes prepared with Al3+ doping exhibit larger particle size and higher crystalline property than that of the sample without Al3+ doping. High ionic conductivity (4.63 x 10(-4) S cm(-1)) and low activation energy (0.28 eV) are obtained for the sample with optimum substitution level (x = 0.3, Li1.3Al0.3Ti1.7(PO4)(3)); while the bare LiTi2(PO4)(3) solid electrolyte delivers conductivity of 1.40 x 10(-5) S cm(-1) and activation energy of 0.38 eV. The significantly increased ionic conductivity and reduced activation energy indicate that Al3+ doping is a good strategy to enhance the performance of LiTi2(PO4)(3) solid electrolyte for solid-state batteries.
引用
收藏
页数:8
相关论文
共 53 条
  • [1] IONIC-CONDUCTIVITY OF THE LITHIUM TITANIUM PHOSPHATE (LI1+XALXTI2-X(PO4)3), (LI1+XSCXTI2-X(PO4)3), (LI1+XYXTI2-X(PO4)3), (LI1+XLAXTI2-X(PO4)3 SYSTEMS
    AONO, H
    SUGIMOTO, E
    SADAOKA, Y
    IMANAKA, N
    ADACHI, GY
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (02) : 590 - 591
  • [2] Carbon coated nano-LiTi2(PO4)3 electrodes for non-aqueous hybrid supercapacitors
    Aravindan, V.
    Chuiling, W.
    Reddy, M. V.
    Rao, G. V. Subba
    Chowdari, B. V. R.
    Madhavi, S.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (16) : 5808 - 5814
  • [3] Ion exchange behavior of the NH4TiOPO4 based exchanger
    Bortun, AI
    Bortun, LN
    Clearfield, A
    [J]. SOLVENT EXTRACTION AND ION EXCHANGE, 1998, 16 (02) : 669 - 681
  • [4] Spark plasma sintering of LiTi2(PO4)3-based solid electrolytes
    Chang, CM
    Lee, YI
    Hong, SH
    Park, HM
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2005, 88 (07) : 1803 - 1807
  • [5] Interrelationships among Grain Size, Surface Composition, Air Stability, and Interfacial Resistance of Al-Substituted Li7La3Zr2O12 Solid Electrolytes
    Cheng, Lei
    Wu, Cheng Hao
    Jarry, Angelique
    Chen, Wei
    Ye, Yifan
    Zhu, Junfa
    Kostecki, Robert
    Persson, Kristin
    Guo, Jinghua
    Salmeron, Miguel
    Chen, Guoying
    Doeff, Marca
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (32) : 17649 - 17655
  • [6] The Stone Age Revisited: Building a Monolithic Inorganic Lithium-Ion Battery
    Delaizir, Gaelle
    Viallet, Virginie
    Aboulaich, Abdelmaula
    Bouchet, Renaud
    Tortet, Laurence
    Seznec, Vincent
    Morcrette, Mathieu
    Tarascon, Jean-Marie
    Rozier, Patrick
    Dolle, Mickael
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (10) : 2140 - 2147
  • [7] Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 obtained via solution chemistry
    Duluard, Sandrine
    Paillassa, Aude
    Puech, Laurent
    Vinatier, Philippe
    Turq, Viviane
    Rozier, Patrick
    Lenormand, Pascal
    Taberna, Pierre-Louis
    Simon, Patrice
    Ansart, Florence
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2013, 33 (06) : 1145 - 1153
  • [8] Fast Li+ ion conduction in Li2O (Al2O3 Ga2O3) TiO2 P2O5 glass ceramics
    Fu, J
    [J]. JOURNAL OF MATERIALS SCIENCE, 1998, 33 (06) : 1549 - 1553
  • [9] Microwave-assisted reactive sintering and lithium ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Hallopeau, Leopold
    Bregiroux, Damien
    Rousse, Gwenaelle
    Portehault, David
    Stevens, Philippe
    Toussaint, Gwenaelle
    Laberty-Robert, Christel
    [J]. JOURNAL OF POWER SOURCES, 2018, 378 : 48 - 52
  • [10] Unique rhombus-like precursor for synthesis of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte with high ionic conductivity
    He, Shengnan
    Xu, Youlong
    Zhang, Baofeng
    Sun, Xiaofei
    Chen, Yanjun
    Jin, Yanling
    [J]. CHEMICAL ENGINEERING JOURNAL, 2018, 345 : 483 - 491