Barriers in the brain: resolving dendritic spine morphology and compartmentalization

被引:41
作者
Adrian, Max [1 ]
Kusters, Remy [2 ]
Wierenga, Corette J. [1 ]
Storm, Cornelis [2 ,3 ]
Hoogenraad, Casper C. [1 ]
Kapitein, Lukas C. [1 ]
机构
[1] Univ Utrecht, Fac Sci, Dept Biol, NL-3584 CH Utrecht, Netherlands
[2] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
[3] Eindhoven Univ Technol, Inst Complex Mol Syst, NL-5600 MB Eindhoven, Netherlands
关键词
dendritic spine; super-resolution microscopy; compartment; diffusion; modeling; LONG-TERM POTENTIATION; AMPA RECEPTOR TRAFFICKING; PROTEIN-KINASE-II; STRUCTURAL SYNAPTIC PLASTICITY; 2-PHOTON EXCITATION MICROSCOPY; TIMING-DEPENDENT POTENTIATION; STED MICROSCOPY; ELECTRICAL COMPARTMENTALIZATION; FLUORESCENCE MICROSCOPY; HIPPOCAMPAL-NEURONS;
D O I
10.3389/fnana.2014.00142
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
Dendritic spines are micron-sized protrusions that harbor the majority of excitatory synapses in the central nervous system. The head of the spine is connected to the dendritic shaft by a 50-400 nm thin membrane tube, called the spine neck, which has been hypothesized to confine biochemical and electric signals within the spine compartment. Such compartmentalization could minimize interspinal crosstalk and thereby support spine specific synapse plasticity. However, to what extent compartmentalization is governed by spine morphology, and in particular the diameter of the spine neck, has remained unresolved. Here, we review recent advances in tool development both experimental and theoretical that facilitate studying the role of the spine neck in compartmentalization. Special emphasis is given to recent advances in microscopy methods and quantitative modeling applications as we discuss compartmentalization of biochemical signals, membrane receptors and electrical signals in spines. Multidisciplinary approaches should help to answer how dendritic spine architecture affects the cellular and molecular processes required for synapse maintenance and modulation.
引用
收藏
页数:12
相关论文
共 142 条
[1]   Photoinactivation of native AMPA receptors reveals their real-time trafficking [J].
Adesnik, H ;
Nicoll, RA ;
England, PM .
NEURON, 2005, 48 (06) :977-985
[2]   Postsynaptic scaffolds of excitatory and inhibitory synapses in hippocampal neurons: Maintenance of core components independent of actin filaments and microtubules [J].
Allison, DW ;
Chervin, AS ;
Gelfand, VI ;
Craig, AM .
JOURNAL OF NEUROSCIENCE, 2000, 20 (12) :4545-4554
[3]   MAP OF THE SYNAPSES FORMED WITH THE DENDRITES OF SPINY STELLATE NEURONS OF CAT VISUAL-CORTEX [J].
ANDERSON, JC ;
DOUGLAS, RJ ;
MARTIN, KAC ;
NELSON, JC .
JOURNAL OF COMPARATIVE NEUROLOGY, 1994, 341 (01) :25-38
[4]   Sodium channels amplify spine potentials [J].
Araya, Roberto ;
Nikolenko, Volodymyr ;
Eisenthal, Kenneth B. ;
Yuste, Rafael .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (30) :12347-12352
[5]   The spine neck filters membrane potentials [J].
Araya, Roberto ;
Jiang, Jiang ;
Eisenthal, Kenneth B. ;
Yuste, Rafael .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (47) :17961-17966
[6]   Activity-dependent dendritic spine neck changes are correlated with synaptic strength [J].
Araya, Roberto ;
Vogels, Tim P. ;
Yuste, Rafael .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (28) :E2895-E2904
[7]   Ultrastructure of dendritic spines: correlation between synaptic and spine morphologies [J].
Arellano, Jon I. ;
Benavides-Piccione, Ruth ;
DeFelipe, Javier ;
Yuste, Rafael .
FRONTIERS IN NEUROSCIENCE, 2007, 1 (01) :131-143
[8]   Removal of AMPA receptors (AMPARs) from synapses is preceded by transient endocytosis of extrasynaptic AMPARs [J].
Ashby, MC ;
De La Rue, SA ;
Ralph, GS ;
Uney, J ;
Collingridge, GL ;
Henley, JM .
JOURNAL OF NEUROSCIENCE, 2004, 24 (22) :5172-5176
[9]   Lateral diffusion drives constitutive exchange of AMPA receptors at dendritic spines and is regulated by spine morphology [J].
Ashby, Michael C. ;
Maier, Susie R. ;
Nishimune, Atsushi ;
Henley, Jeremy M. .
JOURNAL OF NEUROSCIENCE, 2006, 26 (26) :7046-7055
[10]   Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation [J].
Barria, A ;
Muller, D ;
Derkach, V ;
Griffith, LC ;
Soderling, TR .
SCIENCE, 1997, 276 (5321) :2042-2045