A novel prognostic score to assess the risk of progression in relapsing-remitting multiple sclerosis patients

被引:20
作者
Pisani, Anna Isabella [1 ]
Scalfari, Antonio [2 ]
Crescenzo, Francesco [1 ]
Romualdi, Chiara [3 ]
Calabrese, Massimiliano [1 ]
机构
[1] Univ Verona, Dept Neurol & Movement Sci, Verona, Italy
[2] Imperial Coll London, Brain Div, London, England
[3] Univ Padua, Dept Biol, Padua, Italy
关键词
multiple sclerosis; demyelinating diseases; neurological disorders; risk factors; CLINICAL-COURSE; DISABILITY; MATTER; ACCUMULATION; PREDICTORS; FORESTS; TIME; AGE;
D O I
10.1111/ene.14859
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background At the patient level, the prognostic value of several features that are known to be associated with an increased risk of converting from relapsing-remitting (RR) to secondary phase (SP) multiple sclerosis (MS) remains limited. Methods Among 262 RRMS patients followed up for 10 years, we assessed the probability of developing the SP course based on clinical and conventional and non-conventional magnetic resonance imaging (MRI) parameters at diagnosis and after 2 years. We used a machine learning method, the random survival forests, to identify, according to their minimal depth (MD), the most predictive factors associated with the risk of SP conversion, which were then combined to compute the secondary progressive risk score (SP-RiSc). Results During the observation period, 69 (26%) patients converted to SPMS. The number of cortical lesions (MD = 2.47) and age (MD = 3.30) at diagnosis, the global cortical thinning (MD = 1.65), the cerebellar cortical volume loss (MD = 2.15) and the cortical lesion load increase (MD = 3.15) over the first 2 years exerted the greatest predictive effect. Three patients' risk groups were identified; in the high-risk group, 85% (46/55) of patients entered the SP phase in 7 median years. The SP-RiSc optimal cut-off estimated was 17.7 showing specificity and sensitivity of 87% and 92%, respectively, and overall accuracy of 88%. Conclusions The SP-RiSc yielded a high performance in identifying MS patients with high probability to develop SPMS, which can help improve management strategies. These findings are the premise of further larger prospective studies to assess its use in clinical settings.
引用
收藏
页码:2503 / 2512
页数:10
相关论文
共 36 条
[1]   A random forest guided tour [J].
Biau, Gerard ;
Scornet, Erwan .
TEST, 2016, 25 (02) :197-227
[2]  
Breiman L., 2017, CLASSIF REGRES TREES, V2000
[3]   Early imaging predictors of long-term outcomes in relapse-onset multiple sclerosis [J].
Brownlee, Wallace J. ;
Altmann, Dan R. ;
Prados, Ferran ;
Miszkiel, Katherine A. ;
Eshaghi, Arman ;
Wheeler-Kingshott, Claudia A. M. Gandini ;
Barkhof, Frederik ;
Ciccarelli, Olga .
BRAIN, 2019, 142 :2276-2287
[4]   The Changing Clinical Course of Multiple Sclerosis: A Matter of Gray Matter [J].
Calabrese, Massimiliano ;
Romualdi, Chiara ;
Poretto, Valentina ;
Favaretto, Alice ;
Morra, Aldo ;
Rinaldi, Francesca ;
Perini, Paola ;
Gallo, Paolo .
ANNALS OF NEUROLOGY, 2013, 74 (01) :76-83
[5]   Early clinical predictors and progression of irreversible disability in multiple sclerosis: an amnesic process [J].
Confavreux, C ;
Vukusic, S ;
Adeleine, P .
BRAIN, 2003, 126 :770-782
[6]   Silent progression in disease activity-free relapsing multiple sclerosis [J].
Cree, Bruce A. C. ;
Hollenbach, Jill A. ;
Bove, Riley ;
Kirkish, Gina ;
Sacco, Simone ;
Caverzasi, Eduardo ;
Bischof, Antje ;
Gundel, Tristan ;
Zhu, Alyssa H. ;
Papinutto, Nico ;
Stern, William A. ;
Bevan, Carolyn ;
Romeo, Andrew ;
Goodin, Douglas S. ;
Gelfand, Jeffrey M. ;
Graves, Jennifer ;
Green, Ari J. ;
Wilson, Michael R. ;
Zamvil, Scott S. ;
Zhao, Chao ;
Gomez, Refujia ;
Ragan, Nicholas R. ;
Rush, Gillian Q. ;
Barba, Patrick ;
Santaniello, Adam ;
Baranzini, Sergio E. ;
Oksenberg, Jorge R. ;
Henry, Roland G. ;
Hauser, Stephen L. .
ANNALS OF NEUROLOGY, 2019, 85 (05) :653-666
[7]   Random Survival Forest in practice: a method for modelling complex metabolomics data in time to event analysis [J].
Dietrich, Stefan ;
Floegel, Anna ;
Troll, Martina ;
Kuehn, Tilman ;
Rathmann, Wolfgang ;
Peters, Anette ;
Sookthai, Disorn ;
von Bergen, Martin ;
Kaaks, Rudolf ;
Adamski, Jerzy ;
Prehn, Cornelia ;
Boeing, Heiner ;
Schulze, Matthias B. ;
Illig, Thomas ;
Pischon, Tobias ;
Knueppel, Sven ;
Wang-Sattler, Rui ;
Drogan, Dagmar .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2016, 45 (05) :1406-1420
[8]   Progressive multiple sclerosis 2 Treatment of progressive multiple sclerosis: what works, what does not, and what is needed [J].
Feinstein, Anthony ;
Freeman, Jenny ;
Lo, Albert C. .
LANCET NEUROLOGY, 2015, 14 (02) :194-207
[9]   Gray matter damage predicts the accumulation of disability 13 years later in MS [J].
Filippi, Massimo ;
Preziosa, Paolo ;
Copetti, Massimiliano ;
Riccitelli, Gianna ;
Horsfield, Mark A. ;
Martinelli, Vittorio ;
Comi, Giancarlo ;
Rocca, Maria A. .
NEUROLOGY, 2013, 81 (20) :1759-1767
[10]   Gray matter atrophy is related to long-term disability in multiple sclerosis [J].
Fisniku, Leonora K. ;
Chard, Declan T. ;
Jackson, Jonathan S. ;
Anderson, Valerie M. ;
Altmann, Daniel R. ;
Miszkiel, Katherine A. ;
Thompson, Alan J. ;
Miller, David H. .
ANNALS OF NEUROLOGY, 2008, 64 (03) :247-254