Interface defect chemistry enables dendrite-free lithium metal anodes

被引:13
作者
Mu, Tiansheng [1 ]
Lu, Hongfu [1 ]
Ren, Yang [1 ]
Wan, Xin [1 ]
Xu, Xing [2 ]
Tan, Siping [2 ]
Ma, Yulin [1 ]
Yin, Geping [1 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers, Harbin 150001, Peoples R China
[2] Guizhou Meiling Power Sources Co Ltd, State Key Lab Adv Chem Power Sources, Zunyi 563003, Guizhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium metal anode; Defect chemistry; Artificial layer; Lithium dendrite; Dendrite-free electrodeposition; TIO2;
D O I
10.1016/j.cej.2022.135109
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Lithium dendrite can cause battery failure and safety risks, which is a major obstacle for the commercial application of lithium metal anodes. Herein, an artificial protective layer with interface defects is proposed to promote the interfacial electrochemical kinetics and achieve the ultra-long electrochemical plating/stripping stability. Taking titanium oxide (TiO2) as a research object, the interfacial oxygen-deficient TiO2 coating (H-TiO2) shows the faster lithium ion diffusion kinetics compared to the pristine TiO2 layer and fresh lithium metal anode, and this interfacial defect chemistry can facilitate homogenous lithium ion flux and regulate lithium metal dendrite-free electrodeposition. Specifically, the H-TiO2 protective layer endows lithium metal anodes ultra-long cycling stability up to 1990 h at 2.0 mA cm(-2) with a low overpotential of 27.5 mV. Remarkably, the artificial H-TiO2 coating improves the cycling stability (97.5 mAh g(-1) after 350cycles) and rate performance (68.5 mAh g(-1) at 4.0C) of full cells paired with LiFePO4 cathode. More importantly, this work opens a door for regulating lithium metal reversible electrodeposition by interface defect chemistry.
引用
收藏
页数:9
相关论文
共 46 条
[1]   Rutile titanium dioxide prepared by hydrogen reduction of Degussa P25 for highly efficient photocatalytic hydrogen evolution [J].
Amano, Fumiaki ;
Nakata, Masashi ;
Yamamoto, Akira ;
Tanaka, Tsunehiro .
CATALYSIS SCIENCE & TECHNOLOGY, 2016, 6 (14) :5693-5699
[2]   Lotus-Root-Like Carbon Fibers Embedded with Ni-Co Nanoparticles for Dendrite-Free Lithium Metal Anodes [J].
Chen, Chen ;
Guan, Jun ;
Li, Nian Wu ;
Lu, Yue ;
Luan, Deyan ;
Zhang, Cai Hong ;
Cheng, Guang ;
Yu, Le ;
Lou, Xiong Wen .
ADVANCED MATERIALS, 2021, 33 (24)
[3]   Oxygen vacancies and phase tuning of self-supported black TiO2-X nanotube arrays for enhanced sodium storage [J].
Chen, Jun ;
Fu, Yanlong ;
Sun, Fang ;
Hu, Zhengguang ;
Wang, Xing ;
Zhang, Ting ;
Zhang, Fengshou ;
Wu, Xiaoling ;
Chen, Haisheng ;
Cheng, Guoan ;
Zheng, Ruiting .
CHEMICAL ENGINEERING JOURNAL, 2020, 400
[4]   Black Anatase Titania with Ultrafast Sodium-Storage Performances Stimulated by Oxygen Vacancies [J].
Chen, Jun ;
Ding, Zhiying ;
Wang, Chao ;
Hou, Hongshuai ;
Zhang, Yan ;
Wang, Chiwei ;
Zou, Guoqiang ;
Ji, Xiaobo .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (14) :9142-9151
[5]   Lithium metal protected by atomic layer deposition metal oxide for high performance anodes [J].
Chen, Lin ;
Connell, Justin G. ;
Nie, Anmin ;
Huang, Zhennan ;
Zavadil, Kevin R. ;
Klavetter, Kyle C. ;
Yuan, Yifei ;
Sharifi-Asl, Soroosh ;
Shahbazian-Yassar, Reza ;
Libera, Joseph A. ;
Mane, Anil U. ;
Elam, Jeffrey W. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (24) :12297-12309
[6]   A Facile Approach to Prepare Black TiO2 with Oxygen Vacancy for Enhancing Photocatalytic Activity [J].
Chen, Shihao ;
Xiao, Yang ;
Wang, Yinhai ;
Hu, Zhengfa ;
Zhao, Hui ;
Xie, Wei .
NANOMATERIALS, 2018, 8 (04)
[7]   A Protective Layer for Lithium Metal Anode: Why and How [J].
Han, Zhiyuan ;
Zhang, Chen ;
Lin, Qiaowei ;
Zhang, Yunbo ;
Deng, Yaqian ;
Han, Junwei ;
Wu, Dingcai ;
Kang, Feiyu ;
Yang, Quan-Hong ;
Lv, Wei .
SMALL METHODS, 2021, 5 (04)
[8]   Oxygen-Deficient Blue TiO2 for Ultrastable and Fast Lithium Storage [J].
Hao, Zhongkai ;
Chen, Qi ;
Dai, Wenrui ;
Ren, Yinjuan ;
Zhou, Yin ;
Yang, Jinlin ;
Xie, Sijie ;
Shen, Yanbin ;
Wu, Jihong ;
Chen, Wei ;
Xu, Guo Qin .
ADVANCED ENERGY MATERIALS, 2020, 10 (10)
[9]   The passivity of lithium electrodes in liquid electrolytes for secondary batteries [J].
He, Xin ;
Bresser, Dominic ;
Passerini, Stefano ;
Baakes, Florian ;
Krewer, Ulrike ;
Lopez, Jeffrey ;
Mallia, Christopher Thomas ;
Shao-Horn, Yang ;
Cekic-Laskovic, Isidora ;
Wiemers-Meyer, Simon ;
Soto, Fernando A. ;
Ponce, Victor ;
Seminario, Jorge M. ;
Balbuena, Perla B. ;
Jia, Hao ;
Xu, Wu ;
Xu, Yaobin ;
Wang, Chongmin ;
Horstmann, Birger ;
Amine, Rachid ;
Su, Chi-Cheung ;
Shi, Jiayan ;
Amine, Khalil ;
Winter, Martin ;
Latz, Arnulf ;
Kostecki, Robert .
NATURE REVIEWS MATERIALS, 2021, 6 (11) :1036-1052
[10]   Adsorption energy engineering of nickel oxide hybrid nanosheets for high areal capacity flexible lithium-ion batteries [J].
Huang, Yongchao ;
Yang, Hao ;
Xiong, Tuzhi ;
Adekoya, David ;
Qiu, Weitao ;
Wang, Zhongmin ;
Zhang, Shanqing ;
Balogun , M-Sadeeq .
ENERGY STORAGE MATERIALS, 2020, 25 (25) :41-51