Hydrogen and inert species in solid phase epitaxy

被引:11
|
作者
Lieten, R. R. [1 ,2 ]
Degroote, S. [2 ]
Clemente, F. [2 ]
Leys, M. [2 ]
Borghs, G. [2 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA
[2] IMEC, B-3001 Leuven, Belgium
关键词
adsorption; amorphous semiconductors; crystallisation; elemental semiconductors; germanium; noncrystalline structure; semiconductor epitaxial layers; semiconductor growth; solid phase epitaxial growth; vacuum deposited coatings; vacuum deposition; THIN-FILMS; GE GROWTH; SI; QUALITY; SURFACES; SI(100);
D O I
10.1063/1.3293453
中图分类号
O59 [应用物理学];
学科分类号
摘要
The incorporation of hydrogen during deposition of amorphous germanium can influence solid phase epitaxy in many ways. We show that Ge-H bonds are not important during the crystallization process. However, atomic hydrogen is important during deposition to obtain a highly disordered layer. We have found that highly disordered layers can also be obtained when using a beam of inert gas species during ultrahigh vacuum deposition. These inert species effectively increase the disorder of the layer by limiting the surface mobility of adsorbed germanium atoms. In this way subsequent solid phase epitaxy can be improved significantly.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] The influence of hydrogen during the growth of Ge films on Si(001) by solid source molecular beam epitaxy
    Dentel, D
    Bischoff, JL
    Angot, T
    Kubler, L
    SURFACE SCIENCE, 1998, 402 (1-3) : 211 - 214
  • [32] Ammonia: A source of hydrogen dopant for InN layers grown by metal organic vapor phase epitaxy
    Ruffenach, S.
    Moret, M.
    Briot, O.
    Gil, B.
    APPLIED PHYSICS LETTERS, 2009, 95 (04)
  • [33] Dopant enhanced H diffusion in amorphous silicon and its effect on the kinetics of solid phase epitaxy
    Johnson, B. C.
    Caradonna, P.
    McCallum, J. C.
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2009, 157 (1-3): : 6 - 10
  • [34] Encapsulated solid phase epitaxy of a Ge quantum well embedded in an epitaxial rare earth oxide
    Laha, Apurba
    Bugiel, E.
    Jestremski, M.
    Ranjith, R.
    Fissel, A.
    Osten, H. J.
    NANOTECHNOLOGY, 2009, 20 (47)
  • [35] Study of ultrathin iron silicide films grown by solid phase epitaxy on the Si(001) surface
    Balashev, V. V.
    Korobtsov, V. V.
    Pisarenko, T. A.
    Chusovitin, E. A.
    Galkin, K. N.
    PHYSICS OF THE SOLID STATE, 2010, 52 (02) : 397 - 403
  • [36] Influence of initial amorphous layer deposition temperature on lateral solid-phase epitaxy of silicon
    Moniwa, M
    Hasegawa, H
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2002, 41 (2A): : 472 - 481
  • [37] Crystallization of amorphous complex oxides: New geometries and new compositions via solid phase epitaxy
    Evans, Paul G.
    Chen, Yajin
    Tilka, Jack A.
    Babcock, Susan E.
    Kuech, Thomas F.
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2018, 22 (06): : 229 - 242
  • [38] Large-grained polycrystalline Si films obtained by selective nucleation and solid phase epitaxy
    Puglisi, RA
    Tanabe, H
    Chen, CM
    Atwater, HA
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2000, 73 (1-3): : 212 - 217
  • [39] Hydrogen in InN: A ubiquitous phenomenon in molecular beam epitaxy grown material
    Darakchieva, V.
    Lorenz, K.
    Barradas, N. P.
    Alves, E.
    Monemar, B.
    Schubert, M.
    Franco, N.
    Hsiao, C. L.
    Chen, L. C.
    Schaff, W. J.
    Tu, L. W.
    Yamaguchi, T.
    Nanishi, Y.
    APPLIED PHYSICS LETTERS, 2010, 96 (08)
  • [40] Si substrates texturing and vapor-solid-solid Si nanowhiskers growth using pure hydrogen as source gas
    Nordmark, H.
    Nagayoshi, H.
    Matsumoto, N.
    Nishimura, S.
    Terashima, K.
    Marioara, C. D.
    Walmsley, J. C.
    Holmestad, R.
    Ulyashin, A.
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (04)