Hydrogen and inert species in solid phase epitaxy

被引:11
|
作者
Lieten, R. R. [1 ,2 ]
Degroote, S. [2 ]
Clemente, F. [2 ]
Leys, M. [2 ]
Borghs, G. [2 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA
[2] IMEC, B-3001 Leuven, Belgium
关键词
adsorption; amorphous semiconductors; crystallisation; elemental semiconductors; germanium; noncrystalline structure; semiconductor epitaxial layers; semiconductor growth; solid phase epitaxial growth; vacuum deposited coatings; vacuum deposition; THIN-FILMS; GE GROWTH; SI; QUALITY; SURFACES; SI(100);
D O I
10.1063/1.3293453
中图分类号
O59 [应用物理学];
学科分类号
摘要
The incorporation of hydrogen during deposition of amorphous germanium can influence solid phase epitaxy in many ways. We show that Ge-H bonds are not important during the crystallization process. However, atomic hydrogen is important during deposition to obtain a highly disordered layer. We have found that highly disordered layers can also be obtained when using a beam of inert gas species during ultrahigh vacuum deposition. These inert species effectively increase the disorder of the layer by limiting the surface mobility of adsorbed germanium atoms. In this way subsequent solid phase epitaxy can be improved significantly.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Solid phase epitaxy of amorphous Ge on Si in N2 atmosphere
    Lieten, R. R.
    Degroote, S.
    Leys, M.
    Posthuma, N. E.
    Borghs, G.
    APPLIED PHYSICS LETTERS, 2009, 94 (11)
  • [2] Low-temperature solid phase epitaxy for integrating advanced source/drain metal-oxide-semiconductor structures
    Gouye, A.
    Berbezier, I.
    Favre, L.
    Amiard, G.
    Aouassa, M.
    Campidelli, Y.
    Halimaoui, A.
    APPLIED PHYSICS LETTERS, 2010, 96 (06)
  • [3] Insights into solid phase epitaxy of ultrahighly doped silicon
    Gouye, A.
    Berbezier, I.
    Favre, L.
    Aouassa, M.
    Amiard, G.
    Ronda, A.
    Campidelli, Y.
    Halimaoui, A.
    JOURNAL OF APPLIED PHYSICS, 2010, 108 (01)
  • [4] Hydrogen in amorphous Si and Ge during solid phase epitaxy
    Johnson, B. C.
    Caradonna, P.
    Pyke, D. J.
    McCallum, J. C.
    Gortmaker, P.
    THIN SOLID FILMS, 2010, 518 (09) : 2317 - 2322
  • [5] Modeling two-dimensional solid-phase epitaxial regrowth using level set methods
    Morarka, S.
    Rudawski, N. G.
    Law, M. E.
    Jones, K. S.
    Elliman, R. G.
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (05)
  • [6] GaSb nanocrystals grown by solid phase epitaxy and embedded into monocrystalline silicon
    Chusovitin, E. A.
    Goroshko, D. L.
    Dotsenko, S. A.
    Chusovitina, S. V.
    Shevlyagin, A. V.
    Galkin, N. G.
    Gutakovskii, A. K.
    SCRIPTA MATERIALIA, 2017, 136 : 83 - 86
  • [7] Formation of a Thin Continuous GaSb Film on Si(001) by Solid Phase Epitaxy
    Chusovitin, Evgeniy
    Dotsenko, Sergey
    Chusovitina, Svetlana
    Goroshko, Dmitry
    Gutakovskii, Anton
    Subbotin, Evgeniy
    Galkin, Konstantin
    Galkin, Nikolay
    NANOMATERIALS, 2018, 8 (12):
  • [8] Tensile strained GeSn on Si by solid phase epitaxy
    Lieten, R. R.
    Seo, J. W.
    Decoster, S.
    Vantomme, A.
    Peters, S.
    Bustillo, K. C.
    Haller, E. E.
    Menghini, M.
    Locquet, J. -P.
    APPLIED PHYSICS LETTERS, 2013, 102 (05)
  • [9] Lateral solid phase epitaxy of yttrium iron garnet
    Sailler, Sebastian
    Pohl, Darius
    Schloerb, Heike
    Rellinghaus, Bernd
    Thomas, Andy
    Goennenwein, Sebastian T. B.
    Lammel, Michaela
    PHYSICAL REVIEW MATERIALS, 2024, 8 (02):
  • [10] Quantitative investigation of hydrogen bonds on Si(100) surfaces prepared by vapor phase epitaxy
    Dobrich, Anja
    Kleinschmidt, Peter
    Doescher, Henning
    Hannappel, Thomas
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2011, 29 (04):