Lithography-Free Broadband Ultrathin-Film Absorbers with Gap-Plasmon Resonance for Organic Photovoltaics

被引:22
作者
Choi, Minjung [1 ]
Kang, Gumin [1 ]
Shin, Dongheok [1 ]
Barange, Nilesh [2 ]
Lee, Chang-Won [3 ]
Ko, Doo-Hyun [4 ]
Kim, Kyoungsik [1 ]
机构
[1] Yonsei Univ, Sch Mech Engn, 50 Yonsei Ro, Seoul 03722, South Korea
[2] Korea Inst Sci & Technol, 14 Gil, Seoul 02792, South Korea
[3] Samsung Adv Inst Technol, Suwon 16678, Gyeonggi Do, South Korea
[4] Kyung Hee Univ, Dept Appl Chem, Yongin 17104, Gyeonggi, South Korea
基金
新加坡国家研究基金会;
关键词
ultrathin-film absorber; gap surface plasmon; broadband absorption; thermal dewetting; nanoparticles; SOLAR-CELLS; PERFECT ABSORBERS; LIGHT; ABSORPTION; GOLD; NANOPARTICLES; MODES; NANOSTRUCTURES; METAMATERIALS; METASURFACE;
D O I
10.1021/acsami.6b02340
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Strategies to confine electromagnetic field within ultrathin film emerge as essential technologies for applications from thin-film solar cells to imaging and sensing devices. We demonstrate a lithography-free, low-cost, large-scale method to realize broadband ultrathi-film metal dielectric-metal (MDM) absorbers, by exploiting gap-plasmon resonances for strongly confined electromagnetic field. A two-steps method, first organizing Au nanoparticles via thermal dewetting and then transferring the nanoparticles to a spacer - reflector substrate, is used to achieve broader absorption bandwidth by manipulating geometric shapes of the top metallic layer into hemiellipsoids. A fast-deposited nominal Au film, instead of a conventional slow one, is employed in the Ostwald ripening process to attain hemiellipsoidal nanoparticles. A polymer supported transferring step allows a wider range of dewetting temperature to manipulate the nanoparticles' shape. By incorporating circularity with ImageJ software, the geometries of hemiellipsoidal nanoparticles are quantitatively characterized. Controlling the top geometry of MDM structure from hemisphere to hemiellipsoid increases the average absorption at 500-900 nm from 23.1% to 43.5% in the ultrathin film and full width at half maximum of 132-324 nm, which is consistently explained by finite-difference time-domain simulation. The structural advantages of our scheme are easily applicable to thin-film photovoltaic devices because metal electrodes can act as metal reflectors and semiconductor layers as dielectric spacers.
引用
收藏
页码:12997 / 13008
页数:12
相关论文
共 59 条
  • [11] A Metal-Oxide Interconnection Layer for Polymer Tandem Solar Cells with an Inverted Architecture
    Chou, Cheng-Hsuan
    Kwan, Wei Lek
    Hong, Ziruo
    Chen, Li-Min
    Yang, Yang
    [J]. ADVANCED MATERIALS, 2011, 23 (10) : 1282 - +
  • [12] Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations
    Christ, A.
    Zentgraf, T.
    Tikhodeev, S. G.
    Gippius, N. A.
    Kuhl, J.
    Giessen, H.
    [J]. PHYSICAL REVIEW B, 2006, 74 (15)
  • [13] Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles
    Derkacs, D.
    Lim, S. H.
    Matheu, P.
    Mar, W.
    Yu, E. T.
    [J]. APPLIED PHYSICS LETTERS, 2006, 89 (09)
  • [14] Plasmonic-Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier
    Gan, Qiaoqiang
    Bartoli, Filbert J.
    Kafafi, Zakya H.
    [J]. ADVANCED MATERIALS, 2013, 25 (17) : 2385 - 2396
  • [15] Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate
    Gartia, Manas Ranjan
    Hsiao, Austin
    Sivaguru, Mayandi
    Chen, Yi
    Liu, G. Logan
    [J]. NANOTECHNOLOGY, 2011, 22 (36)
  • [16] Coherent emission of light by thermal sources
    Greffet, JJ
    Carminati, R
    Joulain, K
    Mulet, JP
    Mainguy, SP
    Chen, Y
    [J]. NATURE, 2002, 416 (6876) : 61 - 64
  • [17] Conjugated polymer-based organic solar cells
    Guenes, Serap
    Neugebauer, Helmut
    Sariciftci, Niyazi Serdar
    [J]. CHEMICAL REVIEWS, 2007, 107 (04) : 1324 - 1338
  • [18] Plasmonics: An Emerging Field Fostered by Nano Letters
    Halas, Naomi J.
    [J]. NANO LETTERS, 2010, 10 (10) : 3816 - 3822
  • [19] Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes
    Hylton, N. P.
    Li, X. F.
    Giannini, V.
    Lee, K. -H.
    Ekins-Daukes, N. J.
    Loo, J.
    Vercruysse, D.
    Van Dorpe, P.
    Sodabanlu, H.
    Sugiyama, M.
    Maier, S. A.
    [J]. SCIENTIFIC REPORTS, 2013, 3
  • [20] Shape identification and particles size distribution from basic shape parameters using ImageJ
    Igathinathane, C.
    Pordesimo, L. O.
    Columbus, E. P.
    Batchelor, W. D.
    Methuku, S. R.
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2008, 63 (02) : 168 - 182