Lithography-Free Broadband Ultrathin-Film Absorbers with Gap-Plasmon Resonance for Organic Photovoltaics

被引:22
作者
Choi, Minjung [1 ]
Kang, Gumin [1 ]
Shin, Dongheok [1 ]
Barange, Nilesh [2 ]
Lee, Chang-Won [3 ]
Ko, Doo-Hyun [4 ]
Kim, Kyoungsik [1 ]
机构
[1] Yonsei Univ, Sch Mech Engn, 50 Yonsei Ro, Seoul 03722, South Korea
[2] Korea Inst Sci & Technol, 14 Gil, Seoul 02792, South Korea
[3] Samsung Adv Inst Technol, Suwon 16678, Gyeonggi Do, South Korea
[4] Kyung Hee Univ, Dept Appl Chem, Yongin 17104, Gyeonggi, South Korea
基金
新加坡国家研究基金会;
关键词
ultrathin-film absorber; gap surface plasmon; broadband absorption; thermal dewetting; nanoparticles; SOLAR-CELLS; PERFECT ABSORBERS; LIGHT; ABSORPTION; GOLD; NANOPARTICLES; MODES; NANOSTRUCTURES; METAMATERIALS; METASURFACE;
D O I
10.1021/acsami.6b02340
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Strategies to confine electromagnetic field within ultrathin film emerge as essential technologies for applications from thin-film solar cells to imaging and sensing devices. We demonstrate a lithography-free, low-cost, large-scale method to realize broadband ultrathi-film metal dielectric-metal (MDM) absorbers, by exploiting gap-plasmon resonances for strongly confined electromagnetic field. A two-steps method, first organizing Au nanoparticles via thermal dewetting and then transferring the nanoparticles to a spacer - reflector substrate, is used to achieve broader absorption bandwidth by manipulating geometric shapes of the top metallic layer into hemiellipsoids. A fast-deposited nominal Au film, instead of a conventional slow one, is employed in the Ostwald ripening process to attain hemiellipsoidal nanoparticles. A polymer supported transferring step allows a wider range of dewetting temperature to manipulate the nanoparticles' shape. By incorporating circularity with ImageJ software, the geometries of hemiellipsoidal nanoparticles are quantitatively characterized. Controlling the top geometry of MDM structure from hemisphere to hemiellipsoid increases the average absorption at 500-900 nm from 23.1% to 43.5% in the ultrathin film and full width at half maximum of 132-324 nm, which is consistently explained by finite-difference time-domain simulation. The structural advantages of our scheme are easily applicable to thin-film photovoltaic devices because metal electrodes can act as metal reflectors and semiconductor layers as dielectric spacers.
引用
收藏
页码:12997 / 13008
页数:12
相关论文
共 59 条
  • [1] Large-Area Metasurface Perfect Absorbers from Visible to Near-Infrared
    Akselrod, Gleb M.
    Huang, Jiani
    Hoang, Thang B.
    Bowen, Patrick T.
    Su, Logan
    Smith, David R.
    Mikkelsen, Maiken H.
    [J]. ADVANCED MATERIALS, 2015, 27 (48) : 8028 - 8034
  • [2] Enhanced optical bistability with film-coupled plasmonic nanocubes
    Argyropoulos, Christos
    Ciraci, Cristian
    Smith, David R.
    [J]. APPLIED PHYSICS LETTERS, 2014, 104 (06)
  • [3] Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime
    Atay, T
    Song, JH
    Nurmikko, AV
    [J]. NANO LETTERS, 2004, 4 (09) : 1627 - 1631
  • [4] Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/NMAT2629, 10.1038/nmat2629]
  • [5] Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers
    Aydin, Koray
    Ferry, Vivian E.
    Briggs, Ryan M.
    Atwater, Harry A.
    [J]. NATURE COMMUNICATIONS, 2011, 2
  • [6] Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation
    Bae, Kyuyoung
    Kang, Gumin
    Cho, Suehyun K.
    Park, Wounjhang
    Kim, Kyoungsik
    Padilla, Willie J.
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [7] General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators
    Bozhevolnyi, Sergey I.
    Sondergaard, Thomas
    [J]. OPTICS EXPRESS, 2007, 15 (17) : 10869 - 10877
  • [8] Design principles for particle plasmon enhanced solar cells
    Catchpole, K. R.
    Polman, A.
    [J]. APPLIED PHYSICS LETTERS, 2008, 93 (19)
  • [9] Catchpole KR, 2008, OPT EXPRESS, V16, P21793, DOI 10.1364/OE.16.021793
  • [10] Thin-film solar cells: An overview
    Chopra, KL
    Paulson, PD
    Dutta, V
    [J]. PROGRESS IN PHOTOVOLTAICS, 2004, 12 (2-3): : 69 - 92