The glass transition of thin polymeric films can be profitably studied using lateral force microscopy (LFM) if the system is calibrated regarding operational parameters, in particular the applied load and the scanning velocity. We have established that these two parameters significantly influence the occurrence of an apparent glass transition. In particular, we have found that the local pressure, applied by the LFM tip, is insufficient to generate a hydrostatic pressure effect causing an increase in the apparent transition temperature. In fact, at a constant scan velocity and for increased load, the apparent transition temperature decreases towards the actual bulk value. Further discussions in this article are based on viscoelastic theories. Critical time scales that are characteristic for sliding are compared to polymer relaxation times, and provide an estimate of the viscosity temperature dependence. (C) 2000 American Institute of Physics. [S0021-9606(00)50428-0].