On-demand quantum state transfer and entanglement between remote microwave cavity memories

被引:188
作者
Axline, Christopher J. [1 ,2 ]
Burkhart, Luke D. [1 ,2 ]
Pfaff, Wolfgang [1 ,2 ,3 ]
Zhang, Mengzhen [1 ,2 ]
Chou, Kevin [1 ,2 ]
Campagne-Ibarcq, Philippe [1 ,2 ]
Reinhold, Philip [1 ,2 ]
Frunzio, Luigi [1 ,2 ]
Girvin, S. M. [1 ,2 ]
Jiang, Liang [1 ,2 ]
Devoret, M. H. [1 ,2 ]
Schoelkopf, R. J. [1 ,2 ]
机构
[1] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA
[2] Yale Univ, Dept Phys, New Haven, CT 06520 USA
[3] Microsoft Stn Q Delft, Delft, Netherlands
基金
美国国家科学基金会;
关键词
HERALDED ENTANGLEMENT; NOISY CHANNELS; TELEPORTATION; INFORMATION; NETWORK; ENSEMBLES; PHOTON; QUBITS; ATOMS; BITS;
D O I
10.1038/s41567-018-0115-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Coupling isolated quantum systems through propagating photons is a central theme in quantum science(1,2), with the potential for groundbreaking applications such as distributed, fault-tolerant quantum computing(3-5). To date, photons have been used widely to realize high-fidelity remote entanglement(6-12) and state transfer(13-15) by compensating for inefficiency with conditioning, a fundamentally probabilistic strategy that places limits on the rate of communication. In contrast, here we experimentally realize a long-standing proposal for deterministic, direct quantum state transfer(16). Using efficient, parametrically controlled emission and absorption of microwave photons, we show on-demand, high-fidelity state transfer and entanglement between two isolated superconducting cavity quantum memories. The transfer rate is faster than the rate of photon loss in either memory, an essential requirement for complex networks. By transferring states in a multiphoton encoding, we further show that the use of cavity memories and state-independent transfer creates the striking opportunity to deterministically mitigate transmission loss with quantum error correction. Our results establish a compelling approach for deterministic quantum communication across networks, and will enable modular scaling of superconducting quantum circuits.
引用
收藏
页码:705 / +
页数:8
相关论文
共 36 条
[1]   An architecture for integrating planar and 3D cQED devices [J].
Axline, C. ;
Reagor, M. ;
Heeres, R. ;
Reinhold, P. ;
Wang, C. ;
Shain, K. ;
Pfaff, W. ;
Chu, Y. ;
Frunzio, L. ;
Schoelkopf, R. J. .
APPLIED PHYSICS LETTERS, 2016, 109 (04)
[2]   Purification of noisy entanglement and faithful teleportation via noisy channels [J].
Bennett, CH ;
Brassard, G ;
Popescu, S ;
Schumacher, B ;
Smolin, JA ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1996, 76 (05) :722-725
[3]   Heralded entanglement between solid-state qubits separated by three metres [J].
Bernien, H. ;
Hensen, B. ;
Pfaff, W. ;
Koolstra, G. ;
Blok, M. S. ;
Robledo, L. ;
Taminiau, T. H. ;
Markham, M. ;
Twitchen, D. J. ;
Childress, L. ;
Hanson, R. .
NATURE, 2013, 497 (7447) :86-90
[4]   Response of the Strongly Driven Jaynes-Cummings Oscillator [J].
Bishop, Lev S. ;
Ginossar, Eran ;
Girvin, S. M. .
PHYSICAL REVIEW LETTERS, 2010, 105 (10)
[5]  
Campagne-Ibarcq P., 2017, PREPRINT
[6]   Measurement-induced entanglement for excitation stored in remote atomic ensembles [J].
Chou, CW ;
de Riedmatten, H ;
Felinto, D ;
Polyakov, SV ;
van Enk, SJ ;
Kimble, HJ .
NATURE, 2005, 438 (7069) :828-832
[7]   Quantum state transfer and entanglement distribution among distant nodes in a quantum network [J].
Cirac, JI ;
Zoller, P ;
Kimble, HJ ;
Mabuchi, H .
PHYSICAL REVIEW LETTERS, 1997, 78 (16) :3221-3224
[8]   Quantum privacy amplification and the security of quantum cryptography over noisy channels [J].
Deutsch, D ;
Ekert, A ;
Jozsa, R ;
Macchiavello, C ;
Popescu, S ;
Sanpera, A .
PHYSICAL REVIEW LETTERS, 1996, 77 (13) :2818-2821
[9]   Superconducting Quantum Node for Entanglement and Storage of Microwave Radiation [J].
Flurin, E. ;
Roch, N. ;
Pillet, J. D. ;
Mallet, F. ;
Huard, B. .
PHYSICAL REVIEW LETTERS, 2015, 114 (09)
[10]   Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations [J].
Gottesman, D ;
Chuang, IL .
NATURE, 1999, 402 (6760) :390-393