On nilpotent evolution algebras

被引:21
作者
Elduque, Alberto [1 ,2 ]
Labra, Alicia [3 ]
机构
[1] Univ Zaragoza, Dept Matemat, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, Inst Univ Matemat & Aplicac, E-50009 Zaragoza, Spain
[3] Univ Chile, Fac Ciencias, Dept Matemat, Casilla 653, Santiago, Chile
关键词
Evolution algebra; Nilpotent; Type; Annihilator; Classification;
D O I
10.1016/j.laa.2016.04.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The type and several invariant subspaces related to the upper annihilating series of finite-dimensional nilpotent evolution algebras are introduced. These invariants can be easily computed from any natural basis. Some families of nilpotent evolution algebras, defined in terms of a nondegenerate, symmetric, bilinear form and some commuting, symmetric, diagonalizable endomorphisms relative to the form, are explicitly constructed. Both the invariants and these families are used to review and complete the classification of nilpotent evolution algebras up to dimension five over algebraically closed fields. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:11 / 31
页数:21
相关论文
共 50 条
  • [21] Some Classes of Nilpotent Associative Algebras
    I. A. Karimjanov
    M. Ladra
    Mediterranean Journal of Mathematics, 2020, 17
  • [22] On Levi extensions of nilpotent Lie algebras
    Benito, Pilar
    de-la-Concepcion, Daniel
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (05) : 1441 - 1457
  • [23] Nilpotent symplectic alternating algebras II
    Sorkatti, Layla
    Traustason, Gunnar
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2016, 26 (05) : 1071 - 1094
  • [24] An overview of free nilpotent Lie algebras
    Benito, Pilar
    de-la-Concepcion, Daniel
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2014, 55 (03): : 325 - 339
  • [25] Nilpotent symplectic alternating algebras I
    Sorkatti, Layla
    Traustason, Gunnar
    JOURNAL OF ALGEBRA, 2015, 423 : 615 - 635
  • [26] NILPOTENT n-LIE ALGEBRAS
    Williams, Michael Peretzian
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (06) : 1843 - 1849
  • [27] Degenerations of Zinbiel and nilpotent Leibniz algebras
    Kaygorodov, Ivan
    Popov, Yury
    Pozhidaev, Alexandre
    Volkov, Yury
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (04) : 704 - 716
  • [28] A CLASS OF LOCALLY NILPOTENT COMMUTATIVE ALGEBRAS
    Behn, Antonio
    Elduque, Alberto
    Labra, Alicia
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2011, 21 (05) : 763 - 774
  • [29] A chain of evolution algebras
    Casas, J. M.
    Ladra, M.
    Rozikov, U. A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (04) : 852 - 870
  • [30] Equivalent constructions of nilpotent quadratic Lie algebras
    Benito, Pilar
    Roldan-Lopez, Jorge
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 657 : 1 - 31