Usefulness of an enhanced Kitaev phase-estimation algorithm in quantum metrology and computation

被引:7
|
作者
Kaftal, Tomasz [1 ]
Demkowicz-Dobrzanski, Rafal [1 ]
机构
[1] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 06期
关键词
STATES; LIMIT;
D O I
10.1103/PhysRevA.90.062313
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analyze the performance of a generalized Kitaev's phase-estimation algorithm where N phase gates, acting on M qubits prepared in a product state, may be distributed in an arbitrary way. Unlike the standard algorithm, where the mean square error scales as 1/N, the optimal generalizations offer the Heisenberg 1/N-2 error scaling and we show that they are in fact very close to the fundamental Bayesian estimation bound. We also demonstrate that the optimality of the algorithm breaks down when losses are taken into account, in which case the performance is inferior to the optimal entanglement-based estimation strategies. Finally, we show that when an alternative resource quantification is adopted, which describes the phase estimation in Shor's algorithm more accurately, the standard Kitaev's procedure is indeed optimal and there is no need to consider its generalized version.
引用
收藏
页数:6
相关论文
共 16 条
  • [1] Joint estimation of phase and phase diffusion for quantum metrology
    Vidrighin, Mihai D.
    Donati, Gaia
    Genoni, Marco G.
    Jin, Xian-Min
    Kolthammer, W. Steven
    Kim, M. S.
    Datta, Animesh
    Barbieri, Marco
    Walmsley, Ian A.
    NATURE COMMUNICATIONS, 2014, 5
  • [2] Enhanced phase estimation by implementing dynamical decoupling in a multi-pass quantum metrology protocol
    Rong, Xing
    Huang, Pu
    Kong, Xi
    Xu, Xiangkun
    Shi, Fazhan
    Wang, Ya
    Du, Jiangfeng
    EPL, 2011, 95 (06)
  • [3] Dynamical phase transitions as a resource for quantum enhanced metrology
    Macieszczak, Katarzyna
    Guta, Madalin
    Lesanovsky, Igor
    Garrahan, Juan P.
    PHYSICAL REVIEW A, 2016, 93 (02)
  • [4] Experimental quantum-enhanced estimation of a lossy phase shift
    Kacprowicz, M.
    Demkowicz-Dobrzanski, R.
    Wasilewski, W.
    Banaszek, K.
    Walmsley, I. A.
    NATURE PHOTONICS, 2010, 4 (06) : 357 - 360
  • [5] Quantum-enhanced joint estimation of phase and phase diffusion
    Jayakumar, Jayanth
    Mycroft, Monika E.
    Barbieri, Marco
    Stobinska, Magdalena
    NEW JOURNAL OF PHYSICS, 2024, 26 (07):
  • [6] Influence of multiphoton events on the quantum enhanced phase estimation
    Zhang, Mingran
    Huang, Long
    Liu, Yang
    Zhao, Wei
    Wang, Weiqiang
    OPTICS EXPRESS, 2022, 30 (21) : 37833 - 37845
  • [7] Robustness of quantum-enhanced adaptive phase estimation
    Palittapongarnpim, Pantita
    Sanders, Barry C.
    PHYSICAL REVIEW A, 2019, 100 (01)
  • [8] Quantum Phase Estimation Algorithm with Gaussian Spin States
    Pezze, Luca
    Smerzi, Augusto
    PRX QUANTUM, 2021, 2 (04):
  • [9] Quantum-enhanced phase estimation with an amplified Bell state
    Sahota, Jaspreet
    James, Daniel F. V.
    PHYSICAL REVIEW A, 2013, 88 (06)
  • [10] Quantum correlations in optical metrology: Heisenberg-limited phase estimation without mode entanglement
    Sahota, Jaspreet
    Quesada, Nicolas
    PHYSICAL REVIEW A, 2015, 91 (01):