Usefulness of an enhanced Kitaev phase-estimation algorithm in quantum metrology and computation

被引:9
作者
Kaftal, Tomasz [1 ]
Demkowicz-Dobrzanski, Rafal [1 ]
机构
[1] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 06期
关键词
STATES; LIMIT;
D O I
10.1103/PhysRevA.90.062313
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analyze the performance of a generalized Kitaev's phase-estimation algorithm where N phase gates, acting on M qubits prepared in a product state, may be distributed in an arbitrary way. Unlike the standard algorithm, where the mean square error scales as 1/N, the optimal generalizations offer the Heisenberg 1/N-2 error scaling and we show that they are in fact very close to the fundamental Bayesian estimation bound. We also demonstrate that the optimality of the algorithm breaks down when losses are taken into account, in which case the performance is inferior to the optimal entanglement-based estimation strategies. Finally, we show that when an alternative resource quantification is adopted, which describes the phase estimation in Shor's algorithm more accurately, the standard Kitaev's procedure is indeed optimal and there is no need to consider its generalized version.
引用
收藏
页数:6
相关论文
共 25 条
[1]  
Abadie J, 2011, NAT PHYS, V7, P962, DOI [10.1038/nphys2083, 10.1038/NPHYS2083]
[2]   How to perform the most accurate possible phase measurements [J].
Berry, D. W. ;
Higgins, B. L. ;
Bartlett, S. D. ;
Mitchell, M. W. ;
Pryde, G. J. ;
Wiseman, H. M. .
PHYSICAL REVIEW A, 2009, 80 (05)
[3]   Optimal states and almost optimal adaptive measurements for quantum interferometry [J].
Berry, DW ;
Wiseman, HM .
PHYSICAL REVIEW LETTERS, 2000, 85 (24) :5098-5101
[4]   On decoherence in quantum clock synchronization [J].
Boixo, S. ;
Caves, C. M. ;
Datta, A. ;
Shaji, A. .
LASER PHYSICS, 2006, 16 (11) :1525-1532
[5]   Covariant quantum measurements that maximize the likelihood [J].
Chiribella, G ;
D'Ariano, GM ;
Perinotti, P ;
Sacchi, MF .
PHYSICAL REVIEW A, 2004, 70 (06) :062105-1
[6]  
Chuang I. N., 2000, Quantum Computation and Quantum Information
[7]   Multi-Pass Classical vs. Quantum Strategies in Lossy Phase Estimation [J].
Demkowicz-Dobrzanski, R. .
LASER PHYSICS, 2010, 20 (05) :1197-1202
[8]  
Demkowicz-Dobrzanski R., ARXIV14072934QUANTPH
[9]   The elusive Heisenberg limit in quantum-enhanced metrology [J].
Demkowicz-Dobrzanski, Rafal ;
Kolodynski, Jan ;
Guta, Madalin .
NATURE COMMUNICATIONS, 2012, 3
[10]   Universal algorithm for optimal estimation of quantum states from finite ensembles via realizable generalized measurement [J].
Derka, R ;
Buzek, V ;
Ekert, AK .
PHYSICAL REVIEW LETTERS, 1998, 80 (08) :1571-1575