Tailoring Lewis Acid Properties of Metal-Organic Framework Nodes via Anion Post-Replacement for Gas Adsorption and Separation

被引:23
作者
Zhang, Feifei [1 ]
Zhang, Yingying [1 ]
Ma, Lei [1 ]
Yang, Jiangfeng [1 ,2 ,3 ]
Li, Jinping [1 ,2 ,3 ]
机构
[1] Taiyuan Univ Technol, Res Inst Special Chem, Coll Chem & Chem Engn, Taiyuan 030024, Shanxi, Peoples R China
[2] Shanxi Key Lab Gas Energy Efficient & Clean Utiliz, Taiyuan 030024, Shanxi, Peoples R China
[3] Shanxi Zheda Inst Adv Mat & Chem Engn, Taiyuan 030002, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; ADSORPTION; ION-EXCHANGE; FUNCTIONALIZATION; SUBSTITUTION; PERFORMANCE; MIL-101(CR); CATALYSIS; CAPACITY; PLATFORM; SORPTION;
D O I
10.1021/acssuschemeng.2c01363
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
sites (OMSs) have many applications from sensing, catalysis, to gas adsorption and separation. The OMSs have Lewis acid nature, which are capable of accepting electron density from guest molecules, thus enabling selective gas adsorption. The Lewis acid strength of OMSs plays a pivotal role in the adsorption properties of MOFs. In this work, we report a general method capable of adjusting the Lewis acid strength of OMSs in a cationic framework MIL-101. Relying on a simple anion post-replacement, the chemical environment around the metal centers can be regulated effectively, thus achieving the purpose of the Lewis acid strength adjustment. The Lewis acid properties of OMSs have been studied using different characterization techniques, including Fourier transform infrared, X-ray photoelectron spectroscopy, ultraviolet-visible, and in situ IR spectroscopic analysis, combined with a molecular electrostatic potential calculation. The effect of the Lewis acid strength of the OMSs for gas adsorption and separation was validated by adsorption experiments. Gas sorption isotherms reveal that the modified materials show reverse N2, CH4 selectivity with pristine MIL-101-NO3, which was mainly attributed to the different sensitivity of N2 and CH4 to the open Cr sites, as evidenced by density functional theory calculations. Furthermore, the modified material, MIL-101-Cl, exhibited by far the highest N2O adsorption capacity (136 cm3 g-1 at 1.0 bar and 298 K) and benchmark CO2 uptake. Our method will facilitate further deliberate postsynthetic modifications of other MOFs with OMSs to improve them for applications in chemical separation processes. KEYWORDS: anion postreplacement, Lewis acid strength, metal-organic framework, open metal sites
引用
收藏
页码:9359 / 9368
页数:10
相关论文
共 53 条
[1]   Metal Organic Framework MIL-101(Cr): Spectroscopic Investigations to Reveal Iodine Capture Mechanism [J].
Al Lafi, Abdul G. ;
Assfour, Bassem ;
Assaad, Thaer .
JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2020, 30 (04) :1218-1230
[2]   Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials [J].
Beale, A. M. ;
Gao, F. ;
Lezcano-Gonzalez, I. ;
Peden, C. H. F. ;
Szanyi, J. .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (20) :7371-7405
[3]   Selective Binding of O2 over N2 in a Redox-Active Metal-Organic Framework with Open Iron(II) Coordination Sites [J].
Bloch, Eric D. ;
Murray, Leslie J. ;
Queen, Wendy L. ;
Chavan, Sachin ;
Maximoff, Sergey N. ;
Bigi, Julian P. ;
Krishna, Rajamani ;
Peterson, Vanessa K. ;
Grandjean, Fernande ;
Long, Gary J. ;
Smit, Berend ;
Bordiga, Silvia ;
Brown, Craig M. ;
Long, Jeffrey R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (37) :14814-14822
[4]   Gaining Insights on the H2-Sorbent Interactions: Robust soc-MOF Platform as a Case Study [J].
Cairns, Amy J. ;
Eckert, Juergen ;
Wojtas, Lukasz ;
Thommes, Matthias ;
Wallacher, Dirk ;
Georgiev, Peter A. ;
Forster, Paul M. ;
Belmabkhout, Youssef ;
Ollivier, Jacques ;
Eddaoudi, Mohamed .
CHEMISTRY OF MATERIALS, 2016, 28 (20) :7353-7361
[5]   Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores [J].
Caskey, Stephen R. ;
Wong-Foy, Antek G. ;
Matzger, Adam J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (33) :10870-+
[6]   Mesoporous Metal-Organic Framework MIL-101 at High Pressure [J].
Celeste, Anna ;
Paolone, Annalisa ;
Itie, Jean-Paul ;
Borondics, Ferenc ;
Joseph, Boby ;
Grad, Oana ;
Blanita, Gabriela ;
Zlotea, Claudia ;
Capitani, Francesco .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (35) :15012-15019
[7]   Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene [J].
Cui, Xili ;
Chen, Kaijie ;
Xing, Huabin ;
Yang, Qiwei ;
Krishna, Rajamani ;
Bao, Zongbi ;
Wu, Hui ;
Zhou, Wei ;
Dong, Xinglong ;
Han, Yu ;
Li, Bin ;
Ren, Qilong ;
Zaworotko, Michael J. ;
Chen, Banglin .
SCIENCE, 2016, 353 (6295) :141-144
[8]   Structure-dependent iron-based metal-organic frameworks for selective CO2-to-CH4 photocatalytic reduction [J].
Dao, Xiao-Yao ;
Guo, Jin-Han ;
Zhang, Xiao-Yu ;
Wang, Shi-Qing ;
Cheng, Xiao-Mei ;
Sun, Wei-Yin .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (48) :25850-25856
[9]   Small-Pore Zeolites: Synthesis and Catalysis [J].
Dusselier, Michiel ;
Davis, Mark E. .
CHEMICAL REVIEWS, 2018, 118 (11) :5265-5329
[10]   Mixed-cation LiCa-LSX zeolite with minimum lithium for air separation [J].
Epiepang, Franklin E. ;
Yang, Ralph T. ;
Yang, Xiong ;
Li, Jianbo ;
Liu, Yingshu .
AICHE JOURNAL, 2018, 64 (02) :406-415