Tunable high-order sideband spectra generation using a photonic molecule optomechanical system

被引:47
作者
Cao, Cong [1 ]
Mi, Si-Chen [1 ]
Gao, Yong-Pan [1 ]
He, Ling-Yan [1 ]
Yang, Daquan [2 ,3 ]
Wang, Tie-Jun [1 ,2 ]
Zhang, Ru [1 ,4 ]
Wang, Chuan [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[3] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
[4] Beijing Univ Posts & Telecommun, Sch Ethn Minor Educ, Beijing 100876, Peoples R China
关键词
ELECTROMAGNETICALLY INDUCED TRANSPARENCY; CAVITY;
D O I
10.1038/srep22920
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A tunable high-order sideband spectra generation scheme is presented by using a photonic molecule optomechanical system coupled to a waveguide beyond the perturbation regime. The system is coherently driven by a two-tone laser consisting of a continuous-wave control field and a pulsed driving field which propagates through the waveguide. The frequency spectral feature of the output field is analyzed via numerical simulations, and we confirm that under the condition of intense and nanosecond pulse driving, the output spectrum exhibits the properties of high-order sideband frequency spectra. In the experimentally available parameter range, the output spectrum can be efficiently tuned by the system parameters, including the power of the driving pulse and the coupling rate between the cavities. In addition, analysis of the carrier-envelop phase-dependent effect of high-order sideband generation indicates that the system may present dependence upon the phase of the pulse. This may provide a further insight of the properties of cavity optomechanics in the nonlinear and non-perturbative regime, and may have potential applications in optical frequency comb and communication based on the optomechanical platform.
引用
收藏
页数:8
相关论文
共 51 条
[1]   Electromagnetically induced transparency in mechanical effects of light [J].
Agarwal, G. S. ;
Huang, Sumei .
PHYSICAL REVIEW A, 2010, 81 (04)
[2]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[3]   Scaling law in signal recycled laser-interferometer gravitational-wave detectors [J].
Buonanno, A ;
Chen, YB .
PHYSICAL REVIEW D, 2003, 67 (06)
[4]   Slowing and stopping light using an optomechanical crystal array [J].
Chang, D. E. ;
Safavi-Naeini, A. H. ;
Hafezi, M. ;
Painter, O. .
NEW JOURNAL OF PHYSICS, 2011, 13
[5]   Wavelength-sized GaAs optomechanical resonators with gigahertz frequency [J].
Ding, L. ;
Baker, C. ;
Senellart, P. ;
Lemaitre, A. ;
Ducci, S. ;
Leo, G. ;
Favero, I. .
APPLIED PHYSICS LETTERS, 2011, 98 (11)
[6]   Optomechanical Dark Mode [J].
Dong, Chunhua ;
Fiore, Victor ;
Kuzyk, Mark C. ;
Wang, Hailin .
SCIENCE, 2012, 338 (6114) :1609-1613
[7]   Laser cooling of the alkaline-earth-metal monohydrides: Insights from an ab initio theory study [J].
Gao, Yufeng ;
Gao, Tao .
PHYSICAL REVIEW A, 2014, 90 (05)
[8]   Phonon Laser Action in a Tunable Two-Level System [J].
Grudinin, Ivan S. ;
Lee, Hansuek ;
Painter, O. ;
Vahala, Kerry J. .
PHYSICAL REVIEW LETTERS, 2010, 104 (08)
[9]   Quantum interference effects on ground-state optomechanical cooling [J].
Gu, Wen-ju ;
Li, Gao-xiang .
PHYSICAL REVIEW A, 2013, 87 (02)
[10]   Coherent optical wavelength conversion via cavity optomechanics [J].
Hill, Jeff T. ;
Safavi-Naeini, Amir H. ;
Chan, Jasper ;
Painter, Oskar .
NATURE COMMUNICATIONS, 2012, 3