Direct neural current imaging in an intact cerebellum with magnetic resonance imaging

被引:21
|
作者
Sundarama, Padmavathi [1 ,2 ]
Nummenmaa, Aapo [2 ]
Wells, William [3 ]
Orbach, Darren [1 ]
Orringer, Daniel [4 ,6 ]
Mulkern, Robert [1 ]
Okada, Yoshio [5 ]
机构
[1] Harvard Univ, Sch Med, Dept Radiol, Boston Childrens Hosp, Boston, MA 02115 USA
[2] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Athinoula A Martinos Ctr Biomed Imaging,Dept Radi, Charlestown, MA 02129 USA
[3] Harvard Univ, Brigham & Womens Hosp, Sch Med, Dept Radiol, Boston, MA 02115 USA
[4] Harvard Univ, Brigham & Womens Hosp, Sch Med, Dept Neurosurg, Boston, MA 02115 USA
[5] Harvard Univ, Sch Med, Boston Childrens Hosp, Dept Newborn Med, Boston, MA 02215 USA
[6] Univ Michigan, Dept Neurosurg, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
NEURONAL CURRENT MRI; HUMAN OPTIC-NERVE; ULTRA-LOW FIELD; TURTLE CEREBELLUM; HUMAN BRAIN; PURKINJE-CELLS; SYNAPTIC TRANSMISSION; PHYSIOLOGICAL NOISE; VISUAL-STIMULATION; SIGNAL MODULATION;
D O I
10.1016/j.neuroimage.2016.01.059
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The ability to detect neuronal currents with high spatiotemporal resolution using magnetic resonance imaging (MRI) is important for studying human brain function in both health and disease. While significant progress has been made, we still lack evidence showing that it is possible to measure an MR signal time-locked to neuronal currents with a temporal waveform matching concurrently recorded local field potentials (LFPs). Also lacking is evidence that such MR data can be used to image current distribution in active tissue. Since these two results are lacking even in vitro, we obtained these data in an intact isolated whole cerebellum of turtle during slow neuronal activity mediated by metabotropic glutamate receptors using a gradient-echo EPI sequence (TR = 100 ms) at 4.7 T. Our results show that it is possible (1) to reliably detect an MR phase shift time course matching that of the concurrently measured LFP evoked by stimulation of a cerebellar peduncle, (2) to detect the signal in single voxels of 0.1 mm(3), (3) to determine the spatial phase map matching the magnetic field distribution predicted by the LFP map, (4) to estimate the distribution of neuronal current in the active tissue from a group-average phase map, and (5) to provide a quantitatively accurate theoretical account of the measured phase shifts. The peak values of the detected MR phase shifts were 0.27-0.37 degrees, corresponding to local magnetic field changes of 0.67-0.93 nT (for TE = 26 ms). Our work provides an empirical basis for future extensions to in vivo imaging of neuronal currents. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:477 / 490
页数:14
相关论文
共 50 条
  • [41] Myelin, Myelination, and Corresponding Magnetic Resonance Imaging Changes
    Guleria, Saurabh
    Kelly, Teresa Gross
    RADIOLOGIC CLINICS OF NORTH AMERICA, 2014, 52 (02) : 227 - +
  • [42] Fetal Cerebral Magnetic Resonance Imaging Beyond Morphology
    Jakab, Andras
    Pogledic, Ivana
    Schwartz, Ernst
    Gruber, Gerlinde
    Mitter, Christian
    Brugger, Peter C.
    Langs, Georg
    Schoepf, Veronika
    Kasprian, Gregor
    Prayer, Daniela
    SEMINARS IN ULTRASOUND CT AND MRI, 2015, 36 (06) : 465 - 475
  • [43] Head injuries in childhood Postmortem magnetic resonance imaging
    Buettner, A.
    Graw, M.
    Gora-Stahlberg, G.
    Linn, J.
    RECHTSMEDIZIN, 2011, 21 (03) : 179 - 184
  • [44] Diffusion tensor magnetic resonance imaging of the normal breast
    Partridge, Savannah C.
    Murthy, Revathi S.
    Ziadloo, Ali
    White, Steven W.
    Allison, Kimberly H.
    Lehman, Constance D.
    MAGNETIC RESONANCE IMAGING, 2010, 28 (03) : 320 - 328
  • [45] Functional Magnetic Resonance Imaging (fMRI) and Expert Testimony
    Kulich, Ronald
    Maciewicz, Raymond
    Scrivani, Steven J.
    PAIN MEDICINE, 2009, 10 (02) : 373 - 380
  • [46] SQUIDs for Magnetic Resonance Imaging at Ultra-low Magnetic Field
    Matlashov, A. N.
    Zotev, V. S.
    Kraus, R. H., Jr.
    Sandin, H.
    Urbaitis, A. V.
    Volegov, P. L.
    Espy, M. A.
    PIERS 2009 MOSCOW VOLS I AND II, PROCEEDINGS, 2009, : 802 - 806
  • [47] Computed Inverse Magnetic Resonance Imaging for Magnetic Susceptibility Map Reconstruction
    Chen, Zikuan
    Calhoun, Vince
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2012, 36 (02) : 265 - 274
  • [48] Current techniques of magnetic resonance imaging in neuropediatrics. Applications for diagnostics, perioperative management and treatment control
    Wilke, M.
    Dreha-Kulaczewski, S.
    MONATSSCHRIFT KINDERHEILKUNDE, 2019, 167 (04) : 308 - 317
  • [49] Current Understanding of the Anatomy, Physiology, and Magnetic Resonance Imaging of Neurofluids: Update From the 2022 "ISMRM Imaging Neurofluids Study group" Workshop in Rome
    Agarwal, Nivedita
    Lewis, Laura D.
    Hirschler, Lydiane
    Rivera, Leonardo Rivera
    Naganawa, Shinji
    Levendovszky, Swati Rane
    Ringstad, Geir
    Klarica, Marijan
    Wardlaw, Joanna
    Iadecola, Costantino
    Hawkes, Cheryl
    Carare, Roxana Octavia
    Wells, Jack
    Bakker, Erik N. T. P.
    Kurtcuoglu, Vartan
    Bilston, Lynne
    Nedergaard, Maiken
    Mori, Yuki
    Stoodley, Marcus
    Alperin, Noam
    de Leon, Mony
    van Osch, Matthias J. P.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2024, 59 (02) : 431 - 449
  • [50] Magnetic resonance advection imaging of cerebrovascular pulse dynamics
    Voss, Henning U.
    Dyke, Jonathan P.
    Tabelow, Karsten
    Schiff, Nicholas D.
    Ballon, Douglas J.
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2017, 37 (04) : 1223 - 1235