Analysis of a contact problem for a viscoelastic Bresse system

被引:12
作者
Copetti, Maria Ines M. [1 ]
EL Arwadi, Toufic [2 ]
Fernandez, Jose R. [3 ]
Naso, Maria Grazia [4 ]
Youssef, Wael [5 ]
机构
[1] Univ Fed Santa Maria, Dept Matemat, LANA, BR-97105900 Santa Maria, RS, Brazil
[2] Beirut Arab Univ, Fac Sci, Dept Math & Comp Sci, Debbieh, Lebanon
[3] Univ Vigo, Escola Enxeneria Telecomunicac, Dept Matemat Aplicada 1, Campus Lagoas Marcosende S-N, Vigo 36310, Spain
[4] Univ Brescia, Dipartimento Ingn Civile Architettura Terr Ambien, Via Valotti 9, I-25133 Brescia, Italy
[5] Lebanese Univ, Fac Sci 1, Dept Math, Hadath, Lebanon
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2021年 / 55卷 / 03期
关键词
Contact problem; Bresse beam; exponential decay; finite element discretization; DYNAMIC CONTACT; NUMERICAL APPROXIMATION; ENERGY DECAY; BEAM; VIBRATIONS; STABILITY;
D O I
10.1051/m2an/2021015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a contact problem between a viscoelastic Bresse beam and a deformable obstacle. The well-known normal compliance contact condition is used to model the contact. The existence of a unique solution to the continuous problem is proved using the Faedo-Galerkin method. An exponential decay property is also obtained defining an adequate Liapunov function. Then, using the finite element method and the implicit Euler scheme, a finite element approximation is introduced. A discrete stability property and a priori error estimates are proved. Finally, some numerical experiments are performed to demonstrate the decay of the discrete energy and the numerical convergence.
引用
收藏
页码:887 / 911
页数:25
相关论文
共 40 条
[1]   Stability and optimality of decay rate for a weakly dissipative Bresse system [J].
Alves, M. O. ;
Fatori, L. H. ;
Jorge Silva, M. A. ;
Monteiro, R. N. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (05) :898-908
[2]   On the dynamic vibrations of an elastic beam in frictional contact with a rigid obstacle [J].
Andrews, KT ;
Shillor, M ;
Wright, S .
JOURNAL OF ELASTICITY, 1996, 42 (01) :1-30
[3]  
[Anonymous], 1988, CONTACT PROBLEMS ELA
[4]  
Antes H., 1992, INT SERIES NUMERICAL, V108
[5]   A CONTACT PROBLEM IN THERMOVISCOELASTIC DIFFUSION THEORY WITH SECOND SOUND [J].
Aouadi, Moncef ;
Copetti, Maria I. M. ;
Fernandez, Jose R. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (03) :759-796
[6]   Analytical and numerical results for a dynamic contact problem with two stops in thermoelastic diffusion theory [J].
Aouadi, Moncef ;
Copetti, Maria I. M. .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2016, 96 (03) :361-384
[7]   On the range of applicability of the Reissner-Mindlin and Kirchhoff-Love plate bending models [J].
Arnold, DN ;
Madureira, AL ;
Zhang, S .
JOURNAL OF ELASTICITY, 2002, 67 (03) :171-185
[8]   Discretization of a nonlinear dynamic thermoviscoelastic Timoshenko beam model [J].
Bernardi, Christine ;
Copetti, Maria Ines M. .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2017, 97 (05) :532-549
[9]   A contact problem for a thermoelastic Timoshenko beam [J].
Berti, Alessia ;
Munoz Rivera, Jaime E. ;
Naso, Maria Grazia .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04) :1969-1986
[10]   A dynamic thermoviscoelastic contact problem with the second sound effect [J].
Berti, Alessia ;
Copetti, Maria I. M. ;
Fernandez, Jose R. ;
Naso, Maria Grazia .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 421 (02) :1163-1195