Understanding the antifungal activity of terbinafine analogues using quantitative structure-activity relationship (QSAR) models

被引:48
|
作者
Gokhale, VM [1 ]
Kulkarni, VM [1 ]
机构
[1] Univ Mumbai, Dept Chem Technol, Div Pharmaceut, Mumbai 400019, India
关键词
D O I
10.1016/S0968-0896(00)00178-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Terbinafine and its analogues, which are a major class of non-azole antifungal agents, are known to act by inhibition of squalene epoxidase enzyme in fungal cells. We have performed a quantitative structure-activity relationship (QSAR) study on a series of 92 molecules using different types of physicochemical descriptors. Inhibitors were divided into five classes depending upon chemical structure. QSAR models were generated for correlation between antifungal activity against Candida albicans using genetic function approximation (GFA) technique. Equations were evaluated using internal as well as external test set predictions. Models generated for all these classes show that steric properties and conformational rigidity of side chains play an important role for the activity. The present QSAR analysis agrees with the results of the previously reported CoMFA study. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:2487 / 2499
页数:13
相关论文
共 50 条
  • [1] Quantitative structure-activity relationship (QSAR) studies on antitumor activity: glutamine analogues
    Rajwade, R. P.
    NEW BIOTECHNOLOGY, 2010, 27 : S22 - S23
  • [2] Toward quantitative structure-activity relationship (QSAR) models for nanoparticles
    Odziomek, Katarzyna
    Ushizima, Daniela
    Puzyn, Tomasz
    Haranczyk, Maciej
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [3] Quantitative Structure-Activity Relationship (QSAR) Studies of Some Glutamine Analogues for Possible Anticancer Activity
    Elidrissi, B.
    Ousaa, A.
    Ghamali, M.
    Chtita, S.
    Ajana, M. A.
    Bouachrine, M.
    Lakhlifi, T.
    MOROCCAN JOURNAL OF CHEMISTRY, 2018, 6 (04): : 752 - 766
  • [4] QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS (QSAR) STUDIES OF BISBENZAMIDINES WITH ANTIFUNGAL ACTIVITY
    de Almeida, Vera L.
    Dias Lopes, Julio Cesar
    Oliveira, Sheila Rodrigues
    Donnici, Claudio L.
    Montanari, Carlos A.
    QUIMICA NOVA, 2010, 33 (07): : 1482 - 1489
  • [5] Biodegradation and Quantitative Structure-Activity Relationship (QSAR)
    Sabljic, Aleksandar
    Nakagawa, Yoshiaki
    NON-FIRST ORDER DEGRADATION AND TIME-DEPENDENT SORPTION OF ORGANIC CHEMICALS IN SOIL, 2014, 1174 : 57 - +
  • [6] Sorption and Quantitative Structure-Activity Relationship (QSAR)
    Sabljic, Aleksandar
    Nakagawa, Yoshiaki
    NON-FIRST ORDER DEGRADATION AND TIME-DEPENDENT SORPTION OF ORGANIC CHEMICALS IN SOIL, 2014, 1174 : 85 - +
  • [7] Quantitative Structure-activity Relationship (QSAR) Models for Docking Score Correction
    Fukunishi, Yoshifumi
    Yamasaki, Satoshi
    Yasumatsu, Isao
    Takeuchi, Koh
    Kurosawa, Takashi
    Nakamura, Haruki
    MOLECULAR INFORMATICS, 2017, 36 (1-2)
  • [8] Quantitative structure-activity relationship (QSAR) models for predicting the estrogenic activity of xenoestrogens.
    Yu, SJ
    Welsh, WJ
    Chen, Y
    Tong, W
    Perkins, R
    Sheehan, D
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 217 : U675 - U676
  • [9] Quantitative structure-activity relationship (QSAR) for neuroprotective activity of terpenoids
    Chang, Hyun-Joo
    Kim, Hyun Jung
    Chun, Hyang Sook
    LIFE SCIENCES, 2007, 80 (09) : 835 - 841
  • [10] Synthesis and structure-activity relationship of antifungal coniothyriomycin analogues
    Krohn, K
    Elsässer, B
    Antus, S
    Kónya, K
    Ammermann, E
    JOURNAL OF ANTIBIOTICS, 2003, 56 (03): : 296 - 305