Deep learning-based container throughput forecasting: a triple bottom line approach

被引:17
|
作者
Shankar, Sonali [1 ]
Punia, Sushil [2 ]
Ilavarasan, P. Vigneswara [1 ]
机构
[1] Indian Inst Technol Delhi, New Delhi, India
[2] FORE Sch Management, New Delhi, India
关键词
Principal component analysis; Triple bottom line; Container throughput; Forecasting; Machine learning; LSTM; SHORT-TERM-MEMORY; NEURAL-NETWORK; MODEL SELECTION; LE HAVRE; PORT; ARIMA; PERFORMANCE; RANGE;
D O I
10.1108/IMDS-12-2020-0704
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Purpose Container throughput forecasting plays a pivotal role in strategic, tactical and operational level decision-making. The determination and analysis of the influencing factors of container throughput are observed to enhance the predicting accuracy. Therefore, for effective port planning and management, this study employs a deep learning-based method to forecast the container throughput while considering the influence of economic, environmental and social factors on throughput forecasting. Design/methodology/approach A novel multivariate container throughput forecasting method is proposed using long short-term memory network (LSTM). The external factors influencing container throughput, delineated using triple bottom line, are considered as an input to the forecasting method. The principal component analysis (PCA) is employed to reduce the redundancy of the input variables. The container throughput data of the Port of Los Angeles (PLA) is considered for empirical analysis. The forecasting accuracy of the proposed method is measured via an error matrix. The accuracy of the results is further substantiated by the Diebold-Mariano statistical test. Findings The result of the proposed method is benchmarked with vector autoregression (VAR), autoregressive integrated moving average (ARIMAX) and LSTM. It is observed that the proposed method outperforms other counterpart methods. Though PCA was not an integral part of the forecasting process, it facilitated the prediction by means of "less data, more accuracy." Originality/value A novel deep learning-based forecasting method is proposed to predict container throughput using a hybridized autoregressive integrated moving average with external factors model and long short-term memory network (ARIMAX-LSTM).
引用
收藏
页码:2100 / 2117
页数:18
相关论文
共 50 条
  • [1] A deep learning-based multivariate decomposition and ensemble framework for container throughput forecasting
    Kulshrestha, Anurag
    Yadav, Abhishek
    Sharma, Himanshu
    Suman, Shikha
    JOURNAL OF FORECASTING, 2024, 43 (07) : 2685 - 2704
  • [2] Comparison of Different Approaches of Machine Learning Methods with Conventional Approaches on Container Throughput Forecasting
    Xu, Shuojiang
    Zou, Shidong
    Huang, Junpeng
    Yang, Weixiang
    Zeng, Fangli
    APPLIED SCIENCES-BASEL, 2022, 12 (19):
  • [3] Deep learning-based cyber resilient dynamic line rating forecasting*
    Moradzadeh, Arash
    Mohammadpourfard, Mostafa
    Genc, Istemihan
    Seker, Sahin Serhat
    Mohammadi-Ivatloo, Behnam
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 142
  • [4] Deep learning-based approach for forecasting intermittent online sales
    Ahmadov Y.
    Helo P.
    Discover Artificial Intelligence, 2023, 3 (01):
  • [5] Deep learning-based forecasting of aggregated CSP production
    Segarra-Tamarit, Jorge
    Perez, Emilio
    Moya, Eric
    Ayuso, Pablo
    Beltran, Hector
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 184 : 306 - 318
  • [6] Deep Learning-Based Forecasting Approach in Smart Grids With Microclustering and Bidirectional LSTM Network
    Jahangir, Hamidreza
    Tayarani, Hanif
    Gougheri, Saleh Sadeghi
    Golkar, Masoud Aliakbar
    Ahmadian, Ali
    Elkamel, Ali
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (09) : 8298 - 8309
  • [7] An innovative deep learning-based approach for significant wave height forecasting
    Bekiryazici, Sule
    Amarouche, Khalid
    Ozcan, Neyir
    Akpinar, Adem
    OCEAN ENGINEERING, 2025, 323
  • [8] Deep Learning-Based Multi-Horizon Forecasting for Automated Material Handling System Throughput in Semiconductor Fab
    Choi, Jungwoo
    Kang, Hyeongwon
    Kim, Jeongseob
    Choi, Heejeong
    Lee, Yunseung
    Kang, Pilsung
    IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2023, 36 (01) : 113 - 129
  • [9] Deep Learning-Based Forecasting of COVID-19 in India
    Pillai, Punitha Kumaresa
    Durairaj, Devaraj
    Samivel, Kanthammal
    JOURNAL OF TESTING AND EVALUATION, 2022, 50 (01) : 225 - 242
  • [10] Deep learning-based ionospheric TEC forecasting
    Demiryege, Ismail
    Ulukavak, Mustafa
    GEOMATIK, 2022, 7 (02): : 80 - 87