Deep learning-based container throughput forecasting: a triple bottom line approach

被引:19
作者
Shankar, Sonali [1 ]
Punia, Sushil [2 ]
Ilavarasan, P. Vigneswara [1 ]
机构
[1] Indian Inst Technol Delhi, New Delhi, India
[2] FORE Sch Management, New Delhi, India
关键词
Principal component analysis; Triple bottom line; Container throughput; Forecasting; Machine learning; LSTM; SHORT-TERM-MEMORY; NEURAL-NETWORK; MODEL SELECTION; LE HAVRE; PORT; ARIMA; PERFORMANCE; RANGE;
D O I
10.1108/IMDS-12-2020-0704
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Purpose Container throughput forecasting plays a pivotal role in strategic, tactical and operational level decision-making. The determination and analysis of the influencing factors of container throughput are observed to enhance the predicting accuracy. Therefore, for effective port planning and management, this study employs a deep learning-based method to forecast the container throughput while considering the influence of economic, environmental and social factors on throughput forecasting. Design/methodology/approach A novel multivariate container throughput forecasting method is proposed using long short-term memory network (LSTM). The external factors influencing container throughput, delineated using triple bottom line, are considered as an input to the forecasting method. The principal component analysis (PCA) is employed to reduce the redundancy of the input variables. The container throughput data of the Port of Los Angeles (PLA) is considered for empirical analysis. The forecasting accuracy of the proposed method is measured via an error matrix. The accuracy of the results is further substantiated by the Diebold-Mariano statistical test. Findings The result of the proposed method is benchmarked with vector autoregression (VAR), autoregressive integrated moving average (ARIMAX) and LSTM. It is observed that the proposed method outperforms other counterpart methods. Though PCA was not an integral part of the forecasting process, it facilitated the prediction by means of "less data, more accuracy." Originality/value A novel deep learning-based forecasting method is proposed to predict container throughput using a hybridized autoregressive integrated moving average with external factors model and long short-term memory network (ARIMAX-LSTM).
引用
收藏
页码:2100 / 2117
页数:18
相关论文
共 64 条
[1]   Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques [J].
Altan, Aytac ;
Karasu, Seckin ;
Bekiros, Stelios .
CHAOS SOLITONS & FRACTALS, 2019, 126 :325-336
[2]   Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach [J].
Bandara, Kasun ;
Bergmeir, Christoph ;
Smyl, Slawek .
EXPERT SYSTEMS WITH APPLICATIONS, 2020, 140
[3]   LEARNING LONG-TERM DEPENDENCIES WITH GRADIENT DESCENT IS DIFFICULT [J].
BENGIO, Y ;
SIMARD, P ;
FRASCONI, P .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (02) :157-166
[4]   Financial time series forecasting model based on CEEMDAN and LSTM [J].
Cao, Jian ;
Li, Zhi ;
Li, Jian .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 519 :127-139
[5]   A comparison of time series methods for forecasting container throughput [J].
Chan, Hing Kai ;
Xu, Shuojiang ;
Qi, Xiaoguang .
INTERNATIONAL JOURNAL OF LOGISTICS-RESEARCH AND APPLICATIONS, 2019, 22 (03) :294-303
[6]   Forecasting container throughputs at ports using genetic programming [J].
Chen, Shih-Huang ;
Chen, Jun-Nan .
EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (03) :2054-2058
[7]   Optimal two-stage ordering policy with Bayesian information updating [J].
Choi, TM ;
Li, D ;
Yan, H .
JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2003, 54 (08) :846-859
[8]  
Chollet F., 2015, Keras
[9]   COMPARING PREDICTIVE ACCURACY [J].
DIEBOLD, FX ;
MARIANO, RS .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1995, 13 (03) :253-263
[10]  
Ee J.Y.C., 2014, J TEKNOL, V69, P163