System Identification using Control Theory.

被引:0
作者
Moir, T. J. [1 ]
机构
[1] AUT Univ, Sch Engn, Auckland, New Zealand
来源
2013 18TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP) | 2013年
关键词
system identification; feedback; autoregressive modelling;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper considers preliminary results for a novel approach to the identification of finite-impulse response (FIR) or autoregressive (AR) models. Whereas traditional methods have employed a cost function such as least-squares or steepest descent, the new method uses deconvolution to split the unknown parameters from the regressors. This is achieved by using convolution in the feedback path of a high-gain control-system.
引用
收藏
页数:6
相关论文
共 7 条
[1]   A MULTIPLE ERROR LMS ALGORITHM AND ITS APPLICATION TO THE ACTIVE CONTROL OF SOUND AND VIBRATION [J].
ELLIOTT, SJ ;
STOTHERS, IM ;
NELSON, PA .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1987, 35 (10) :1423-1434
[2]   EVALUATION OF AN ADAPTIVE BEAMFORMING METHOD FOR HEARING-AIDS [J].
GREENBERG, JE ;
ZUREK, PM .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1992, 91 (03) :1662-1676
[3]  
Haykin S., 2003, Least-mean-square adaptive filters, Vfirst
[4]  
Haykin S, 1986, Adaptive Filter Theory, DOI DOI 10.1121/1.3574766
[5]  
Junfeng W., 2009, MICROWAVE ANTENNA PR, P1127
[6]   Improving Performance of Inter-Vehicle Communication using LMS Adaptive Circular Array Antenna [J].
Yamamoto, Ken ;
Ohno, Kohei ;
Itami, Makoto .
2010 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2010, :1128-1133
[7]   Least mean square algorithms with Markov regime-switching limit [J].
Yin, GG ;
Krishnamurthy, V .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (05) :577-593