Threshold selection in univariate extreme value analysis

被引:12
作者
Schneider, Laura Fee [1 ]
Krajina, Andrea [1 ]
Krivobokova, Tatyana [2 ]
机构
[1] Georg August Univ Gottingen, Inst Math Stochast, Goldschmidtstr 7, D-37077 Gottingen, Germany
[2] Univ Vienna, Inst Stat & Operat Res, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
关键词
Peaks-over-threshold approach; Power laws; Hill estimator; Tuning parameter selection; Bias estimation; TAIL INDEX; SAMPLE FRACTION; REGRESSION; DETERMINANTS; STATISTICS; INFERENCE; ORDER;
D O I
10.1007/s10687-021-00405-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Threshold selection plays a key role in various aspects of statistical inference of rare events. In this work, two new threshold selection methods are introduced. The first approach measures the fit of the exponential approximation above a threshold and achieves good performance in small samples. The second method smoothly estimates the asymptotic mean squared error of the Hill estimator and performs consistently well over a wide range of processes. Both methods are analyzed theoretically, compared to existing procedures in an extensive simulation study and applied to a dataset of financial losses, where the underlying extreme value index is assumed to vary over time.
引用
收藏
页码:881 / 913
页数:33
相关论文
共 43 条
  • [1] ALVES MIF, 2003, PORTUGALIAE MATH, V0060, P00193
  • [2] [Anonymous], 2004, J FINANC ECONOMET
  • [3] [Anonymous], 1974, Course in Probability Theory
  • [4] [Anonymous], 2002, Extremes, DOI [DOI 10.1023/A:, DOI 10.1023/A:1022171205129]
  • [5] AUTOMATED THRESHOLD SELECTION FOR EXTREME VALUE ANALYSIS VIA ORDERED GOODNESS-OF-FIT TESTS WITH ADJUSTMENT FOR FALSE DISCOVERY RATE
    Bader, Brian
    Yan, Jun
    Zhang, Xuebin
    [J]. ANNALS OF APPLIED STATISTICS, 2018, 12 (01) : 310 - 329
  • [6] Estimating the maximum possible earthquake magnitude using extreme value methodology: the Groningen case
    Beirlant, Jan
    Kijko, Andrzej
    Reynkens, Tom
    Einmahl, John H. J.
    [J]. NATURAL HAZARDS, 2019, 98 (03) : 1091 - 1113
  • [7] Caeiro F., 2014, New Advances in Statistical Modeling and Applications, P137
  • [8] Partitioning into hazard subregions for regional peaks-over-threshold modeling of heavy precipitation
    Carreau, J.
    Naveau, P.
    Neppel, L.
    [J]. WATER RESOURCES RESEARCH, 2017, 53 (05) : 4407 - 4426
  • [9] An Extreme Value Approach for Modeling Operational Risk Losses Depending on Covariates
    Chavez-Demoulin, Valerie
    Embrechts, Paul
    Hofert, Marius
    [J]. JOURNAL OF RISK AND INSURANCE, 2016, 83 (03) : 735 - 776
  • [10] Power-Law Distributions in Empirical Data
    Clauset, Aaron
    Shalizi, Cosma Rohilla
    Newman, M. E. J.
    [J]. SIAM REVIEW, 2009, 51 (04) : 661 - 703