Directional Construction of Vertical Nitrogen-Doped 1T-2H MoSe2/Graphene Shell/Core Nanoflake Arrays for Efficient Hydrogen Evolution Reaction

被引:438
作者
Deng, Shengjue [1 ,2 ]
Zhong, Yu [1 ,2 ]
Zeng, Yinxiang [3 ]
Wang, Yadong [4 ]
Yao, Zhujun [1 ,2 ]
Yang, Fan [5 ]
Lin, Shiwei [5 ]
Wang, Xiuli [1 ,2 ]
Lu, Xihong [3 ]
Xia, Xinhui [1 ,2 ]
Tu, Jiangping [1 ,2 ]
机构
[1] Zhejiang Univ, State Key Lab Silicon Mat, Key Lab Adv Mat & Applicat Batteries Zhejiang Pro, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China
[3] Sun Yat Sen Univ, MOE Key Lab Bioinorgan & Synthet Chem, KLGHEI Environm & Energy Chem, Sch Chem, Guangzhou 510275, Guangdong, Peoples R China
[4] Nanyang Polytech, Sch Engn, Singapore 569830, Singapore
[5] Hainan Univ, Coll Mat & Chem Engn, Haikou 570228, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-PERFORMANCE ELECTROCATALYST; MOSE2; NANOSHEETS; GRAPHENE HYBRIDS; FILMS; WS2; TRANSITION; NANOSTRUCTURES; CATALYSTS; NI;
D O I
10.1002/adma.201700748
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The low utilization of active sites and sluggish reaction kinetics of MoSe2 severely impede its commercial application as electrocatalyst for hydrogen evolution reaction (HER). To address these two issues, the first example of introducing 1T MoSe2 and N dopant into vertical 2H MoSe2/graphene shell/core nanoflake arrays that remarkably boost their HER activity is herein described. By means of the improved conductivity, rich catalytic active sites and highly accessible surface area as a result of the introduction of 1T MoSe2 and N doping as well as the unique structural features, the N-doped 1T-2H MoSe2/graphene (N-MoSe2/VG) shell/core nanoflake arrays show substantially enhanced HER activity. Remarkably, the N-MoSe2/VG nanoflakes exhibit a relatively low onset potential of 45 mV and overpotential of 98 mV (vs RHE) at 10 mA cm(-2) with excellent long-term stability (no decay after 20 000 cycles), outperforming most of the recently reported Mo-based electrocatalysts. The success of improving the electrochemical performance via the introduction of 1T phase and N dopant offers new opportunities in the development of high-performance MoSe2-based electrodes for other energy-related applications.
引用
收藏
页数:8
相关论文
共 55 条
  • [1] 2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition
    Ambrosi, Adriano
    Sofer, Zdenek
    Pumera, Martin
    [J]. CHEMICAL COMMUNICATIONS, 2015, 51 (40) : 8450 - 8453
  • [2] The GW method
    Aryasetiawan, F
    Gunnarsson, O
    [J]. REPORTS ON PROGRESS IN PHYSICS, 1998, 61 (03) : 237 - 312
  • [3] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [4] Charge density wave, superconductivity, and anomalous metallic behavior in 2D transition metal dichalcogenides
    Castro Neto, AH
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (19) : 4382 - 4385
  • [5] Highly Efficient Electrocatalytic Hydrogen Production by MoSx Grown on Graphene-Protected 3D Ni Foams
    Chang, Yung-Huang
    Lin, Cheng-Te
    Chen, Tzu-Yin
    Hsu, Chang-Lung
    Lee, Yi-Hsien
    Zhang, Wenjing
    Wei, Kung-Hwa
    Li, Lain-Jong
    [J]. ADVANCED MATERIALS, 2013, 25 (05) : 756 - 760
  • [6] Ultrathin WS2 Nanoflakes as a High-Performance Electrocatalyst for the Hydrogen Evolution Reaction
    Cheng, Liang
    Huang, Wenjing
    Gong, Qiufang
    Liu, Changhai
    Liu, Zhuang
    Li, Yanguang
    Dai, Hongjie
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (30) : 7860 - 7863
  • [7] Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H
    Conway, BE
    Tilak, BV
    [J]. ELECTROCHIMICA ACTA, 2002, 47 (22-23) : 3571 - 3594
  • [8] Alternative energy technologies
    Dresselhaus, MS
    Thomas, IL
    [J]. NATURE, 2001, 414 (6861) : 332 - 337
  • [9] Trimetallic TriStar Nanostructures: Tuning Electronic and Surface Structures for Enhanced Electrocatalytic Hydrogen Evolution
    Du, Nana
    Wang, Chengming
    Wang, Xijun
    Lin, Yue
    Jiang, Jun
    Xiong, Yujie
    [J]. ADVANCED MATERIALS, 2016, 28 (10) : 2077 - +
  • [10] 3D WS2 Nanolayers@Heteroatom-Doped Graphene Films as Hydrogen Evolution Catalyst Electrodes
    Duan, Jingjing
    Chen, Sheng
    Chambers, Benjamin A.
    Andersson, Gunther G.
    Qiao, Shi Zhang
    [J]. ADVANCED MATERIALS, 2015, 27 (28) : 4234 - 4241