Sensitivity analysis of multisector optimal economic dynamics

被引:56
作者
Amir, R [1 ]
机构
[1] UNIV MANNHEIM, DEPT ECON, W-6800 MANNHEIM, GERMANY
关键词
economic dynamics; dynamic programming; lattice programming; sensitivity analysis;
D O I
10.1016/0304-4068(94)00710-1
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper develops several comparative dynamics results for Ramsey-type multidimensional dynamic optimization problems in economics. We provide sufficient conditions for the value function to be monotone and supermodular, and for the extremal optimal policies to be monotone in the state and in other parameters. These results are natural extensions of the one-dimensional case when the varying parameters are endogenous (state variables), but are rather restrictive for exogenous parameters (discount rate and length of horizon). The analysis relies mostly on the fundamental results in lattice programming.
引用
收藏
页码:123 / 141
页数:19
相关论文
共 36 条
[1]   ONE-SECTOR NONCLASSICAL OPTIMAL-GROWTH - OPTIMALITY CONDITIONS AND COMPARATIVE DYNAMICS [J].
AMIR, R ;
MIRMAN, LJ ;
PERKINS, WR .
INTERNATIONAL ECONOMIC REVIEW, 1991, 32 (03) :625-644
[3]  
[Anonymous], AMS C PUBLICATIONS
[4]   THE ONCE BUT NOT TWICE DIFFERENTIABILITY OF THE POLICY FUNCTION [J].
ARAUJO, A .
ECONOMETRICA, 1991, 59 (05) :1383-1393
[5]   SMOOTHNESS, COMPARATIVE DYNAMICS, AND TURNPIKE PROPERTY [J].
ARAUJO, A ;
SCHEINKMAN, JA .
ECONOMETRICA, 1977, 45 (03) :601-620
[6]  
ARAUJO A, 1979, GENERAL EQUILIBRIUM
[7]   COMPARATIVE DYNAMICS IN AGGREGATE MODELS OF OPTIMAL CAPITAL ACCUMULATION [J].
BECKER, RA .
QUARTERLY JOURNAL OF ECONOMICS, 1985, 100 (04) :1235-1256
[8]   COMPARATIVE DYNAMICS IN THE ONE-SECTOR OPTIMAL-GROWTH MODEL [J].
BECKER, RA .
JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 1983, 6 (1-2) :99-107
[9]   COMPETITIVE-EQUILIBRIUM CYCLES [J].
BENHABIB, J ;
NISHIMURA, K .
JOURNAL OF ECONOMIC THEORY, 1985, 35 (02) :284-306
[10]  
BENVENISTE LM, 1979, ECONOMETRICA, V47, P726