IR spectroscopy evidence of MoS2 morphology change by citric acid addition on MoS2/Al2O3 catalysts - A step forward to differentiate the reactivity of M-edge and S-edge

被引:73
作者
Chen, Jianjun [1 ]
Mauge, Francoise [1 ]
El Fallah, Jaafar [1 ]
Oliviero, Laetitia [1 ]
机构
[1] Univ Caen, CNRS, ENSICAEN, Lab Catalyse & Spectrochim, F-14050 Caen, France
关键词
Chelating agent; Hydrodesulfurization; MoS2 slab-support interaction; CO adsorption; Sulfur vacancy formation; Thiophene adsorption; Intrinsic activity; SCANNING-TUNNELING-MICROSCOPY; CHEMICAL-POTENTIAL ANALYSIS; ATOMIC-SCALE STRUCTURE; HYDROTREATING CATALYSTS; HYDRODESULFURIZATION CATALYSTS; MOLYBDENUM SULFIDE; CARBON-MONOXIDE; CO ADSORPTION; ACTIVE PHASE; AB-INITIO;
D O I
10.1016/j.jcat.2014.10.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Citric acid was used as chelating agent to prepare a series of MOS2/Al2O3 catalysts. CO adsorption followed by infrared spectroscopy characterization (IR/CO) was employed to probe the M-edge and S-edge of MOS2 slabs on these catalysts. Addition of citric acid promotes the growth of S-edge, whereas it inhibits that of M-edge: The morphology of MoS2 is progressively modified from a slightly truncated triangle with predominately M-edge to a hexagon with both M-edge and S-edge with increasing citric acid amount. Such morphology change is of great importance to the catalytic performance as M-edge and S-edge demonstrate different reactivity in hydrodesulfurization (HDS) reactions. Indeed, IR/CO data reveal that sulfur vacancy creation occurs more easily on M-edge, whereas at room temperature, thiophene tends to adsorb more strongly on S-edge. Moreover, parallel between IR/CO study and HDS test shows that S-edge has a higher intrinsic activity than M-edge in thiophene HDS reaction. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:170 / 179
页数:10
相关论文
共 68 条
[1]  
BACHELIER J, 1984, B SOC CHIM BELG, V93, P743
[2]   Alkyldibenzothiophenes hydrodesulfurization-promoter effect, reactivity, and reaction mechanism [J].
Bataille, F ;
Lemberton, JL ;
Michaud, P ;
Pérot, G ;
Vrinat, M ;
Lemaire, M ;
Schulz, E ;
Breysse, M ;
Kasztelan, S .
JOURNAL OF CATALYSIS, 2000, 191 (02) :409-422
[3]   Recent STM, DFT and HAADF-STEM studies of sulfide-based hydrotreating catalysts: Insight into mechanistic, structural and particle size effects [J].
Besenbacher, F. ;
Brorson, M. ;
Clausen, B. S. ;
Helveg, S. ;
Hinnemann, B. ;
Kibsgaard, J. ;
Lauritsen, J. V. ;
Moses, P. G. ;
Norskov, J. K. ;
Topsoe, H. .
CATALYSIS TODAY, 2008, 130 (01) :86-96
[4]   New insight in the preparation of alumina supported hydrotreatment oxidic precursors: A molecular approach [J].
Blanchard, P. ;
Lamonier, C. ;
Griboval, A. ;
Payen, E. .
APPLIED CATALYSIS A-GENERAL, 2007, 322 :33-45
[5]  
Bollinger M.V., 2003, PHYS REV B, V67
[6]   The morphology of MoS2, WS2, Co-Mo-S, Ni-Mo-S and Ni-W-S nanoclusters in hydrodesulfurization catalysts revealed [J].
Brorson, M. ;
Carlsson, A. ;
Topsoe, H. .
CATALYSIS TODAY, 2007, 123 (1-4) :31-36
[7]   DFT calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts [J].
Byskov, LS ;
Norskov, JK ;
Clausen, BS ;
Topsoe, H .
JOURNAL OF CATALYSIS, 1999, 187 (01) :109-122
[8]   Edge termination of MoS2 and CoMoS catalyst particles [J].
Byskov, LS ;
Norskov, JK ;
Clausen, BS ;
Topsoe, H .
CATALYSIS LETTERS, 2000, 64 (2-4) :95-99
[9]  
CANDIA R, 1984, B SOC CHIM BELG, V93, P763
[10]   Model oxide supported MoS2 HDS catalysts: structure and surface properties [J].
Cesano, Federico ;
Bertarione, Serena ;
Piovano, Andrea ;
Agostini, Giovanni ;
Rahman, Mohammed Mastabur ;
Groppo, Elena ;
Bonino, Francesca ;
Scarano, Domenica ;
Lamberti, Carlo ;
Bordiga, Silvia ;
Montanari, Luciano ;
Bonoldi, Lucia ;
Millini, Roberto ;
Zecchina, Adriano .
CATALYSIS SCIENCE & TECHNOLOGY, 2011, 1 (01) :123-136