Identification of Antibiotic Resistance Proteins via MiCId's Augmented Workflow. A Mass Spectrometry-Based Proteomics Approach

被引:7
作者
Alves, Gelio [1 ]
Ogurtsov, Aleksey [1 ]
Karlsson, Roger [2 ,3 ,4 ,5 ]
Jaen-Luchoro, Daniel [2 ,4 ,6 ]
Pineiro, Beatriz [3 ,4 ]
Salva-Serra, Francisco [2 ,4 ,7 ]
Andersson, Bjorn [8 ]
Moore, Edward R. . B. [2 ,3 ,4 ,6 ]
Yu, Yi-Kuo [1 ]
机构
[1] Natl Lib Med, Natl Ctr Biotechnol Informat, NIH, Bethesda, MD 20894 USA
[2] Univ Gothenburg, Sahlgrenska Acad, Dept Infect Dis, S-40530 Gothenburg, Sweden
[3] Sahlgrens Univ Hosp, Dept Clin Microbiol, S-40234 Gothenburg, Sweden
[4] Univ Gothenburg, Ctr Antibiot Resistance Res CARe, S-40016 Gothenburg, Sweden
[5] Nanoxis Consulting AB, S-40234 Gothenburg, Sweden
[6] Univ Gothenburg, Sahlgrenska Acad, Culture Collect Univ Gothenburg CCUG, S-40234 Gothenburg, Sweden
[7] Univ Balear Islands, Dept Biol, Microbiol, Palma de Mallorca 07122, Spain
[8] Univ Gothenburg, Sahlgrenska Acad, Bioinformat Core Facil, S-40530 Gothenburg, Sweden
基金
美国国家卫生研究院;
关键词
identification of antibiotic resistance proteins; microorganism identification/classification workflow; mass spectrometry; SPECTRUM BETA-LACTAMASES; ESCHERICHIA-COLI; CLINICAL IMPACT; GENE; METAPROTEOMICS; CLASSIFICATION; EXPRESSION; CHALLENGES; BACTERIA; MICROORGANISMS;
D O I
10.1021/jasms.1c00347
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Fast and accurate identifications of pathogenic bacteria along with their associated antibiotic resistance proteins are of paramount importance for patient treatments and public health. To meet this goal from the mass spectrometry aspect, we have augmented the previously published Microorganism Classification and Identification (MiCId) workflow for this capability. To evaluate the performance of this augmented workflow, we have used MS/MS datafiles from samples of 10 antibiotic resistance bacterial strains belonging to three different species: Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The evaluation shows that MiCId's workflow has a sensitivity value around 85% (with a lower bound at about 72%) and a precision greater than 95% in identifying antibiotic resistance proteins. In addition to having high sensitivity and precision, MiCId's workflow is fast and portable, making it a valuable tool for rapid identifications of bacteria as well as detection of their antibiotic resistance proteins. It performs microorganismal identifications, protein identifications, sample biomass estimates, and antibiotic resistance protein identifications in 6-17 min per MS/MS sample using computing resources that are available in most desktop and laptop computers. We have also demonstrated other use of MiCId's workflow. Using MS/MS data sets from samples of two bacterial clonal isolates, one being antibiotic-sensitive while the other being multidrug-resistant, we applied MiCId's workflow to investigate possible mechanisms of antibiotic resistance in these pathogenic bacteria; the results showed that MiCId's conclusions agree with the published study.
引用
收藏
页码:917 / 931
页数:15
相关论文
共 107 条
[1]   CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database [J].
Alcock, Brian P. ;
Raphenya, Amogelang R. ;
Lau, Tammy T. Y. ;
Tsang, Kara K. ;
Bouchard, Megane ;
Edalatmand, Arman ;
Huynh, William ;
Nguyen, Anna-Lisa, V ;
Cheng, Annie A. ;
Liu, Sihan ;
Min, Sally Y. ;
Miroshnichenko, Anatoly ;
Tran, Hiu-Ki ;
Werfalli, Rafik E. ;
Nasir, Jalees A. ;
Oloni, Martins ;
Speicher, David J. ;
Florescu, Alexandra ;
Singh, Bhavya ;
Faltyn, Mateusz ;
Hernandez-Koutoucheva, Anastasia ;
Sharma, Arjun N. ;
Bordeleau, Emily ;
Pawlowski, Andrew C. ;
Zubyk, Haley L. ;
Dooley, Damion ;
Griffiths, Emma ;
Maguire, Finlay ;
Winsor, Geoff L. ;
Beiko, Robert G. ;
Brinkman, Fiona S. L. ;
Hsiao, William W. L. ;
Domselaar, Gary, V ;
McArthur, Andrew G. .
NUCLEIC ACIDS RESEARCH, 2020, 48 (D1) :D517-D525
[2]   RAId_DbS: Peptide identification using database searches with realistic statistics [J].
Alves, Gelio ;
Ogurtsov, Aleksey Y. ;
Yu, Yi-Kuo .
BIOLOGY DIRECT, 2007, 2 (1)
[3]   Robust Accurate Identification and Biomass Estimates of Miroorganisms via Tandem Mass Spectrometry [J].
Alves, Gelio ;
Yu, Yi-Kuo .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2020, 31 (01) :85-102
[4]   Rapid Classification and Identification of Multiple Microorganisms with Accurate Statistical Significance via High-Resolution Tandem Mass Spectrometry [J].
Alves, Gelio ;
Wang, Guanghui ;
Ogurtsov, Aleksey Y. ;
Drake, Steven K. ;
Gucek, Marjan ;
Sacks, David B. ;
Yu, Yi-Kuo .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2018, 29 (08) :1721-1737
[5]   Identification of Microorganisms by High Resolution Tandem Mass Spectrometry with Accurate Statistical Significance [J].
Alves, Gelio ;
Wang, Guanghui ;
Ogurtsov, Aleksey Y. ;
Drake, Steven K. ;
Gucek, Marjan ;
Suffredini, Anthony F. ;
Sacks, David B. ;
Yu, Yi-Kuo .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2016, 27 (02) :194-210
[6]   Mass spectrometry-based protein identification with accurate statistical significance assignment [J].
Alves, Gelio ;
Yu, Yi-Kuo .
BIOINFORMATICS, 2015, 31 (05) :699-706
[7]   Improving Peptide Identification Sensitivity in Shotgun Proteomics by Stratification of Search Space [J].
Alves, Gelio ;
Yu, Yi-Kuo .
JOURNAL OF PROTEOME RESEARCH, 2013, 12 (06) :2571-2581
[8]   RAId_DbS: mass-spectrometry based peptide identification web server with knowledge integration [J].
Alves, Gelio ;
Ogurtsov, Aleksey Y. ;
Yu, Yi-Kuo .
BMC GENOMICS, 2008, 9 (1)
[9]   Secular Trends in Nosocomial Bloodstream Infections: Antibiotic-Resistant Bacteria Increase the Total Burden of Infection [J].
Ammerlaan, H. S. M. ;
Harbarth, S. ;
Buiting, A. G. M. ;
Crook, D. W. ;
Fitzpatrick, F. ;
Hanberger, H. ;
Herwaldt, L. A. ;
van Keulen, P. H. J. ;
Kluytmans, J. A. J. W. ;
Kola, A. ;
Kuchenbecker, R. S. ;
Lingaas, E. ;
Meessen, N. ;
Morris-Downes, M. M. ;
Pottinger, J. M. ;
Rohner, P. ;
dos Santos, R. P. ;
Seifert, H. ;
Wisplinghoff, H. ;
Ziesing, S. ;
Walker, A. S. ;
Bonten, M. J. M. .
CLINICAL INFECTIOUS DISEASES, 2013, 56 (06) :798-805
[10]  
Anjum MF, 2018, ANTIMICROBIAL RESISTANCE IN BACTERIA FROM LIVESTOCK AND COMPANION ANIMALS, P33, DOI [10.1128/microbiolspec.ARBA-0011-2017, 10.1128/9781555819804.ch3]