Proton transport through one-atom-thick crystals

被引:640
作者
Hu, S. [1 ,2 ]
Lozada-Hidalgo, M. [1 ]
Wang, F. C. [3 ]
Mishchenko, A. [1 ]
Schedin, F. [2 ]
Nair, R. R. [1 ]
Hill, E. W. [2 ]
Boukhvalov, D. W. [4 ]
Katsnelson, M. I. [4 ]
Dryfe, R. A. W. [5 ]
Grigorieva, I. V. [1 ]
Wu, H. A. [3 ]
Geim, A. K. [1 ,2 ]
机构
[1] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
[2] Univ Manchester, Manchester Ctr Mesosci & Nanotechnol, Manchester M13 9PL, Lancs, England
[3] Univ Sci & Technol China, Dept Modern Mech, Key Lab Mech Behav & Design Mat, Chinese Acad Sci, Hefei 230027, Anhui, Peoples R China
[4] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands
[5] Univ Manchester, Sch Chem, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会; 美国国家科学基金会;
关键词
GRAPHENE OXIDE MEMBRANES; NANOPOROUS GRAPHENE; POROUS GRAPHENE; SINGLE-LAYER; WATER DESALINATION; NAFION; CONDUCTIVITY; TEMPERATURE; PERMEATION; MECHANISMS;
D O I
10.1038/nature14015
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Graphene is increasingly explored as a possible platform for developing novel separation technologies(1-19). This interest has arisen because it is a maximally thin membrane that, once perforated with atomic accuracy, may allow ultrafast and highly selective sieving of gases, liquids, dissolved ions and other species of interest(2,9-19). However, a perfect graphene monolayer is impermeable to all atoms and molecules under ambient conditions(1-7): even hydrogen, the smallest of atoms, is expected to take billions of years to penetrate graphene's dense electronic cloud(3-6). Only accelerated atoms possess the kinetic energy required to do this(20,21). The same behaviour might reasonably be expected in the case of other atomically thin crystals(22,23). Here we report transport and mass spectroscopy measurements which establish that monolayers of graphene and hexagonal boron nitride (hBN) are highly permeable to thermal protons under ambient conditions, whereas no proton transport is detected for thicker crystals such as monolayer molybdenum disulphide, bilayer graphene or multilayer hBN. Protons present an intermediate case between electrons (which can tunnel easily through atomically thin barriers(24)) and atoms, yet our measured transport rates are unexpectedly high(4,5) and raise fundamental questions about the details of the transport process. We see the highest room-temperature proton conductivity with monolayer hBN, for which we measure a resistivity to proton flow of about 10 Omega cm(2) and a low activation energy of about 0.3 electronvolts. At higher temperatures, hBN is outperformed by graphene, the resistivity of which is estimated to fall below 10(-3) Omega cm(2) above 250 degrees Celsius. Proton transport can be further enhanced by decorating the graphene and hBN membranes with catalytic metal nanoparticles. The high, selective proton conductivity and stability make one-atom-thick crystals promising candidates for use in many hydrogen-based technologies.
引用
收藏
页码:227 / +
页数:17
相关论文
共 45 条
  • [1] Quantum properties of atomic-sized conductors
    Agraït, N
    Yeyati, AL
    van Ruitenbeek, JM
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2003, 377 (2-3): : 81 - 279
  • [2] Polymeric proton conducting membranes for medium temperature fuel cells (110-160°C)
    Alberti, G
    Casciola, M
    Massinelli, L
    Bauer, B
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2001, 185 (01) : 73 - 81
  • [3] Banhart F, 2011, ACS NANO, V5, P26, DOI [10.1021/nn102598m, 10.1016/B978-0-08-102053-1.00005-3]
  • [4] Impermeability of graphene and its applications
    Berry, Vikas
    [J]. CARBON, 2013, 62 : 1 - 10
  • [5] Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers
    Britnell, Liam
    Gorbachev, Roman V.
    Jalil, Rashid
    Belle, Branson D.
    Schedin, Fred
    Katsnelson, Mikhail I.
    Eaves, Laurence
    Morozov, Sergey V.
    Mayorov, Alexander S.
    Peres, Nuno M. R.
    Castro Neto, Antonio H.
    Leist, Jon
    Geim, Andre K.
    Ponomarenko, Leonid A.
    Novoselov, Kostya S.
    [J]. NANO LETTERS, 2012, 12 (03) : 1707 - 1710
  • [6] Impermeable atomic membranes from graphene sheets
    Bunch, J. Scott
    Verbridge, Scott S.
    Alden, Jonathan S.
    van der Zande, Arend M.
    Parpia, Jeevak M.
    Craighead, Harold G.
    McEuen, Paul L.
    [J]. NANO LETTERS, 2008, 8 (08) : 2458 - 2462
  • [7] Ultimate Permeation Across Atomically Thin Porous Graphene
    Celebi, Kemal
    Buchheim, Jakob
    Wyss, Roman M.
    Droudian, Amirhossein
    Gasser, Patrick
    Shorubalko, Ivan
    Kye, Jeong-Il
    Lee, Changho
    Park, Hyung Gyu
    [J]. SCIENCE, 2014, 344 (6181) : 289 - 292
  • [8] Water Desalination across Nanoporous Graphene
    Cohen-Tanugi, David
    Grossman, Jeffrey C.
    [J]. NANO LETTERS, 2012, 12 (07) : 3602 - 3608
  • [9] Nafion®/poly(vinyl alcohol) blends:: Effect of composition and annealing temperature on transport properties
    DeLuca, Nicholas W.
    Elabd, Yossef A.
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2006, 282 (1-2) : 217 - 224
  • [10] Graphene as a subnanometre trans-electrode membrane
    Garaj, S.
    Hubbard, W.
    Reina, A.
    Kong, J.
    Branton, D.
    Golovchenko, J. A.
    [J]. NATURE, 2010, 467 (7312) : 190 - U73