An L2-Alexander-Conway invariant for knots and the volume conjecture

被引:12
作者
Li, Weiping [1 ]
Zhang, Weiping [1 ]
机构
[1] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
来源
DIFFERENTIAL GEOMETRY AND PHYSICS | 2006年 / 10卷
关键词
braid; knot; Fuglede-Kadison determinant; Alexander-Conway invariant; L-2-Reidemeister torsion; volume conjecture;
D O I
10.1142/9789812772527_0025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:303 / +
页数:3
相关论文
共 22 条
[1]   Topological invariants of knots and links [J].
Alexander, J. W. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1928, 30 (1-4) :275-306
[2]   On the Melvin-Morton-Rozansky conjecture [J].
BarNatan, D ;
Garoufalidis, S .
INVENTIONES MATHEMATICAE, 1996, 125 (01) :103-133
[3]  
Birman J. S., 1976, ANN MATH STUD, V82
[4]   DETERMINANT THEORY IN FINITE FACTORS [J].
FUGLEDE, B ;
KADISON, RV .
ANNALS OF MATHEMATICS, 1952, 55 (03) :520-530
[5]  
GAROUFALIDIS S, ARXIVMATHGT0508100
[6]   Three-dimensional quantum gravity, Chern-Simons theory, and the A-polynomial [J].
Gukov, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 255 (03) :577-627
[7]  
HUYNH V, ARXIVMATHGT0503296
[8]   HECKE ALGEBRA REPRESENTATIONS OF BRAID-GROUPS AND LINK POLYNOMIALS [J].
JONES, VFR .
ANNALS OF MATHEMATICS, 1987, 126 (02) :335-388
[9]   The hyperbolic volume of knots from the quantum dilogarithm [J].
Kashaev, RM .
LETTERS IN MATHEMATICAL PHYSICS, 1997, 39 (03) :269-275
[10]  
KASHAEV RM, 2003, J MATH SCI, V115, P2033