OPERATOR BIPROJECTIVITY OF COMPACT QUANTUM GROUPS

被引:14
作者
Daws, Matthew [1 ]
机构
[1] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
关键词
Compact quantum group; biprojective; Kac algebra; modular automorphism group; VON-NEUMANN-ALGEBRAS; CO-AMENABILITY;
D O I
10.1090/S0002-9939-09-10220-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a (reduced) locally compact quantum group A, we can consider the convolution algebra L-1 (A) (which can be identified as the predual of the von Neumann algebra form of A). It is conjectured that L-1 (A) is operator biprojective if and only if A is compact. The "only if" part always holds, and the "if" part holds for Kac algebras. We show that if the splitting morphism associated with L-1 (A) being biprojective can be chosen to be completely positive, or just contractive, then we already have a Kac algebra. We give another proof of the converse, indicating how modular properties of the Haar state seem to be important.
引用
收藏
页码:1349 / 1359
页数:11
相关论文
共 26 条
[11]   Locally compact quantum groups [J].
Kustermans, J ;
Vaes, S .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2000, 33 (06) :837-934
[12]  
Kustermans J, 2005, LECT NOTES MATH, V1865, P99
[13]  
Maes A., 1998, NIEUW ARCH WISK, V16, P73
[14]  
PAULSEN V.I, 1986, PITMAN RES NOTES MAT, V146
[15]  
Ruan Z.-J., 1997, OPERATOR THEORY OPER, P193
[16]  
Runde V, 2002, Lecture Notes in Math., V1774
[17]   Biflatness and biprojectivity of the Fourier algebra [J].
Runde, Volker .
ARCHIV DER MATHEMATIK, 2009, 92 (05) :525-530
[18]  
Soltan PM, 2005, ILLINOIS J MATH, V49, P1245
[19]  
Takesaki M., 2002, Theory of operator algebras I, V5
[20]  
Takesaki M., 2003, THEORY OPERATOR ALGE, V125, DOI DOI 10.1007/978-3-662-10453-8