OPERATOR BIPROJECTIVITY OF COMPACT QUANTUM GROUPS

被引:14
作者
Daws, Matthew [1 ]
机构
[1] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
关键词
Compact quantum group; biprojective; Kac algebra; modular automorphism group; VON-NEUMANN-ALGEBRAS; CO-AMENABILITY;
D O I
10.1090/S0002-9939-09-10220-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a (reduced) locally compact quantum group A, we can consider the convolution algebra L-1 (A) (which can be identified as the predual of the von Neumann algebra form of A). It is conjectured that L-1 (A) is operator biprojective if and only if A is compact. The "only if" part always holds, and the "if" part holds for Kac algebras. We show that if the splitting morphism associated with L-1 (A) being biprojective can be chosen to be completely positive, or just contractive, then we already have a Kac algebra. We give another proof of the converse, indicating how modular properties of the Haar state seem to be important.
引用
收藏
页码:1349 / 1359
页数:11
相关论文
共 26 条
[1]   Biprojective algebras and operator spaces [J].
Aristov O.Yu. .
Journal of Mathematical Sciences, 2002, 111 (2) :3339-3386
[2]  
Aristov OY, 2004, CONTEMP MATH, V363, P15
[3]   Amenability and co-amenability of algebraic quantum groups II [J].
Bédos, E ;
Murphy, GJ ;
Tuset, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 201 (02) :303-340
[4]  
Bédos E, 2001, J GEOM PHYS, V40, P130, DOI 10.1016/S0393-0440(01)00024-9
[5]  
CHRISTENSEN E, 1995, P LOND MATH SOC, V71, P618
[6]  
EFFROS E. G., 2000, London Mathematical Society Monographs, New Series, V23
[7]  
Enock M., 1992, KAC ALGEBRAS DUALITY
[8]   Classification of hyperfinite factors up to completely bounded isomorphism of their preduals [J].
Haagerup, Uffe ;
Musat, Magdalena .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 630 :141-176
[9]  
Helemskii A. Ya., 1989, HOMOLOGY BANACH TOPO, V41
[10]   Locally compact quantum groups in the Von Neumann algebraic setting [J].
Kustermans, J ;
Vaes, S .
MATHEMATICA SCANDINAVICA, 2003, 92 (01) :68-92