Existence results of nontrivial solutions for a new p(x)-biharmonic problem with weight function

被引:10
作者
Guo, Wei [1 ]
Yang, Jinfu [1 ]
Zhang, Jiafeng [1 ]
机构
[1] Guizhou Minzu Univ, Sch Data Sci & Informat Engn, Guiyang 550025, Peoples R China
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 05期
基金
中国国家自然科学基金;
关键词
nontrivial solutions; p(x)-biharmonic problem; mountain pass theorem; Ekeland's variational principle; variable exponent; KIRCHHOFF-TYPE PROBLEMS; P(X)-LAPLACIAN PROBLEMS; ELLIPTIC-EQUATIONS; MULTIPLE SOLUTIONS; VARIABLE EXPONENT;
D O I
10.3934/math.2022473
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a class of p(x)-biharmonic problems with negative nonlocal terms and weight function. Using the mountain pass theorem and the Ekeland's variational principle, at least three solutions are obtained. We also give some comments on the existence of infinite many solutions for our problem when the nonlinear term is a general function.
引用
收藏
页码:8491 / 8509
页数:19
相关论文
共 47 条
[1]   New diffusion models in image processing [J].
Aboulaich, R. ;
Meskine, D. ;
Souissi, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (04) :874-882
[2]  
Acerbi E, 2005, J REINE ANGEW MATH, V584, P117
[3]   Existence and Multiplicity of Solutions for Kirchhoff Type Problems Involving p(x)-Biharmonic Operators [J].
Afrouzi, G. A. ;
Mirzapour, M. ;
Chung, N. T. .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2014, 33 (03) :289-303
[4]   Low perturbations of p-biharmonic equations with competing nonlinearities [J].
Alsaedi, R. ;
Dhifli, A. ;
Ghanmi, A. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (04) :642-657
[5]   Multiple solutions for a class of quasilinear problems involving variable exponents [J].
Alves, Claudianor O. ;
Barreiro, Jose L. P. .
ASYMPTOTIC ANALYSIS, 2016, 96 (02) :161-184
[6]  
[Anonymous], 2006, Ann. Univ. Ferrara Sez. VII Sci. Mat., DOI DOI 10.1007/S11565-006-0002-9
[7]  
[Anonymous], 1996, Minimax Theorems
[8]  
[Anonymous], 1959, Studia Math., DOI DOI 10.4064/SM-18-1-49-65
[9]  
[Anonymous], 1951, Topology and Linear Topological Spaces
[10]  
Antontsev S., 2007, Adv. Math. Sci. Appl, V17, P287