High-Quality-Factor Silicon-on-Lithium Niobate Metasurfaces for Electro-optically Reconfigurable Wavefront Shaping

被引:75
作者
Klopfer, Elissa [1 ]
Dagli, Sahil [1 ]
Barton, David, III [2 ]
Lawrence, Mark [3 ]
Dionne, Jennifer A. [1 ,4 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02139 USA
[3] Washington Univ, Dept Elect & Syst Engn, St Louis, MO 63130 USA
[4] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
reconfigurable metasurface; electro-optics; high Q; multifunctionality; beamsteering; NANOPHOTONICS; MODULATOR; OPTICS;
D O I
10.1021/acs.nanolett.1c04723
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Dynamically reconfigurable metasurfaces promise compact and lightweight spatial light modulation for many applications, including LiDAR, AR/VR, and LiFi systems. Here, we design and computationally investigate high-quality-factor silicon-on-lithium niobate metasurfaces with electrically driven, independent control of its constituent nanobars for full phase tunability with high tuning efficiency. Free-space light couples to guided modes within each nanobar via periodic perturbations, generating quality factors exceeding 30,000 while maintaining a bar spacing of <lambda/1.5. We achieve nearly 2 pi phase variation with an applied bias not exceeding +/- 25 V, maintaining a reflection efficiency above 91%. Using full-field simulations, we demonstrate a high-angle (51 degrees) switchable beamsplitter with a diffracted efficiency of 93% and an angle-tunable beamsteerer, spanning 18-31 degrees, with up to 86% efficiency, all using the same metasurface device. Our platform provides a foundation for highly efficient wavefront-shaping devices with a wide dynamic tuning range capable of generating nearly any transfer function.
引用
收藏
页码:1703 / 1709
页数:7
相关论文
共 46 条
[1]   Multiwavelength achromatic metasurfaces by dispersive phase compensation [J].
Aieta, Francesco ;
Kats, Mikhail A. ;
Genevet, Patrice ;
Capasso, Federico .
SCIENCE, 2015, 347 (6228) :1342-1345
[2]   Wavefront shaping and modulation with resonant electro-optic phase gradient metasurfaces [J].
Barton, D. ;
Lawrence, M. ;
Dionne, J. .
APPLIED PHYSICS LETTERS, 2021, 118 (07)
[3]   High-Q nanophotonics: sculpting wavefronts with slow light [J].
Barton, David, III ;
Hu, Jack ;
Dixon, Jefferson ;
Klopfer, Elissa ;
Dagli, Sahil ;
Lawrence, Mark ;
Dionne, Jennifer .
NANOPHOTONICS, 2021, 10 (01) :83-88
[4]   12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes [J].
Chen, Li ;
Wood, Michael G. ;
Reano, Ronald M. .
OPTICS EXPRESS, 2013, 21 (22) :27003-27010
[5]   A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures [J].
Chen, Wei Ting ;
Zhu, Alexander Y. ;
Sisler, Jared ;
Bharwani, Zameer ;
Capasso, Federico .
NATURE COMMUNICATIONS, 2019, 10 (1)
[6]   Optical Evaluation of the Rear Contacts of Crystalline Silicon Solar Cells by Coupled Electromagnetic and Statistical Ray-Optics Modeling [J].
Dabirian, Ali ;
Morales-Masis, Monica ;
Haug, Franz-Josef ;
De Wolf, Stefaan ;
Ballif, Christophe .
IEEE JOURNAL OF PHOTOVOLTAICS, 2017, 7 (03) :718-726
[7]   Perimeter-Control Architecture for Optical Phased Arrays and Metasurfaces [J].
Davoyan, Artur ;
Atwater, Harry .
PHYSICAL REVIEW APPLIED, 2020, 14 (02)
[8]   Temporal color mixing and dynamic beam shaping with silicon metasurfaces [J].
Holsteen, Aaron L. ;
Cihan, Ahmet Fatih ;
Brongersma, Mark L. .
SCIENCE, 2019, 365 (6450) :257-+
[9]   Optical Limiting Based on Huygens' Metasurfaces [J].
Howes, Austin ;
Zhu, Zhihua ;
Curie, David ;
Avila, Jason R. ;
Wheeler, Virginia D. ;
Haglund, Richard F. ;
Valentine, Jason G. .
NANO LETTERS, 2020, 20 (06) :4638-4644
[10]   Bound states in the continuum [J].
Hsu, Chia Wei ;
Zhen, Bo ;
Stone, A. Douglas ;
Joannopoulos, John D. ;
Soljacic, Marin .
NATURE REVIEWS MATERIALS, 2016, 1 (09)