Bio-Scaffolds as Cell or Exosome Carriers for Nerve Injury Repair

被引:54
作者
Poongodi, Raju [1 ]
Chen, Ying-Lun [2 ,3 ]
Yang, Tao-Hsiang [1 ]
Huang, Ya-Hsien [2 ,3 ]
Yang, Kuender D. [4 ,5 ,6 ]
Lin, Hsin-Chieh [7 ]
Cheng, Jen-Kun [1 ,2 ,3 ]
机构
[1] Mackay Mem Hosp, Dept Med Res, Taipei 10449, Taiwan
[2] Mackay Mem Hosp, Dept Anesthesiol, Taipei 10449, Taiwan
[3] Mackay Med Coll, Dept Med, New Taipei 25245, Taiwan
[4] Mackay Med Coll, Inst Biomed Sci, New Taipei 25245, Taiwan
[5] Mackay Mem Hosp, Dept Pediat, Taipei 10449, Taiwan
[6] Natl Yang Ming Chiao Tung Univ, Inst Clin Med, Taipei 11221, Taiwan
[7] Natl Yang Ming Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan
关键词
bio-scaffold; biomaterial; exosome; motor function; natural polymer; nerve injury; nerve regeneration; MESENCHYMAL STEM-CELLS; HYALURONIC-ACID; SPINAL-CORD; SILK FIBROIN; REGENERATIVE MEDICINE; MECHANICAL-PROPERTIES; NANOFIBER HYDROGEL; CHITOSAN CONDUIT; POROUS SCAFFOLD; TISSUE;
D O I
10.3390/ijms222413347
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Central and peripheral nerve injuries can lead to permanent paralysis and organ dysfunction. In recent years, many cell and exosome implantation techniques have been developed in an attempt to restore function after nerve injury with promising but generally unsatisfactory clinical results. Clinical outcome may be enhanced by bio-scaffolds specifically fabricated to provide the appropriate three-dimensional (3D) conduit, growth-permissive substrate, and trophic factor support required for cell survival and regeneration. In rodents, these scaffolds have been shown to promote axonal regrowth and restore limb motor function following experimental spinal cord or sciatic nerve injury. Combining the appropriate cell/exosome and scaffold type may thus achieve tissue repair and regeneration with safety and efficacy sufficient for routine clinical application. In this review, we describe the efficacies of bio-scaffolds composed of various natural polysaccharides (alginate, chitin, chitosan, and hyaluronic acid), protein polymers (gelatin, collagen, silk fibroin, fibrin, and keratin), and self-assembling peptides for repair of nerve injury. In addition, we review the capacities of these constructs for supporting in vitro cell-adhesion, mechano-transduction, proliferation, and differentiation as well as the in vivo properties critical for a successful clinical outcome, including controlled degradation and re-absorption. Finally, we describe recent advances in 3D bio-printing for nerve regeneration.
引用
收藏
页数:19
相关论文
共 142 条
  • [1] Nerve guidance conduit design based on self-rolling tubes
    Aigner, T. B.
    Haynl, C.
    Salehi, S.
    O'Connor, A.
    Scheibel, T.
    [J]. MATERIALS TODAY BIO, 2020, 5
  • [2] Transgenic human embryonic stem cells overexpressing FGF2 stimulate neuroprotection following spinal cord ventral root avulsion
    Araujo, Marta Rocha
    Kyrylenko, Sergiy
    Spejo, Aline Barroso
    Castro, Mateus Vidigal
    Ferreira Junior, Rui Seabra
    Barraviera, Benedito
    Rodrigues Oliveira, Alexandre Leite
    [J]. EXPERIMENTAL NEUROLOGY, 2017, 294 : 45 - 57
  • [3] Peripheral nerve conduits: technology update
    Arslantunali, D.
    Dursun, T.
    Yucel, D.
    Hasirci, N.
    Hasirci, V.
    [J]. MEDICAL DEVICES-EVIDENCE AND RESEARCH, 2014, 7 (07): : 405 - 424
  • [4] Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering
    Arulmoli, Janahan
    Wright, Heather J.
    Phan, Duc T. T.
    Sheth, Urmi
    Que, Richard A.
    Botten, Giovanni A.
    Keating, Mark
    Botvinick, Elliot L.
    Pathak, Medha M.
    Zarembinski, Thomas I.
    Yanni, Daniel S.
    Razorenova, Olga V.
    Hughes, Christopher C. W.
    Flanagan, Lisa A.
    [J]. ACTA BIOMATERIALIA, 2016, 43 : 122 - 138
  • [5] Bilayer Cylindrical Conduit Consisting of Electrospun Polycaprolactone Nanofibers and DSC Cross-Linked Sodium Alginate Hydrogel to Bridge Peripheral Nerve Gaps
    Askarzadeh, Neshat
    Nazarpak, Masoumeh Haghbin
    Mansoori, Korosh
    Farokhi, Mehdi
    Gholami, Mahdi
    Mohammadi, Javad
    Mottaghitalab, Fatemeh
    [J]. MACROMOLECULAR BIOSCIENCE, 2020, 20 (09)
  • [6] Sodium Alginate/Gelatine Hydrogels for Direct Bioprinting-The Effect of Composition Selection and Applied Solvents on the Bioink Properties
    Bociaga, Dorota
    Bartniak, Mateusz
    Grabarczyk, Jacek
    Przybyszewska, Karolina
    [J]. MATERIALS, 2019, 12 (17)
  • [7] Chitosan-based hydrogel to support the paracrine activity of mesenchymal stem cells in spinal cord injury treatment
    Boido, M.
    Ghibaudi, M.
    Gentile, P.
    Favaro, E.
    Fusaro, R.
    Tonda-Turo, C.
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [8] Biological Functions and Current Advances in Isolation and Detection Strategies for Exosome Nanovesicles
    Boriachek, Kseniia
    Islam, Md. Nazmul
    Moller, Andreas
    Salomon, Carlos
    Nam-Trung Nguyen
    Hossain, Md. Shahriar A.
    Yamauchi, Yusuke
    Shiddiky, Muhammad J. A.
    [J]. SMALL, 2018, 14 (06)
  • [9] Metal Nanoparticles Released from Dental Implant Surfaces: Potential Contribution to Chronic Inflammation and Peri-Implant Bone Loss
    Bressan, Eriberto
    Ferroni, Letizia
    Gardin, Chiara
    Bellin, Gloria
    Sbricoli, Luca
    Sivolella, Stefano
    Brunello, Giulia
    Schwartz-Arad, Devorah
    Mijiritsky, Eitan
    Penarrocha, Miguel
    Penarrocha, David
    Taccioli, Cristian
    Tatullo, Marco
    Piattelli, Adriano
    Zavan, Barbara
    [J]. MATERIALS, 2019, 12 (12)
  • [10] Naturally-Derived Biomaterials for Tissue Engineering Applications
    Brovold, Matthew
    Almeida, Joana I.
    Pla-Palacin, Iris
    Sainz-Arnal, Pilar
    Sanchez-Romero, Natalia
    Rivas, Jesus J.
    Almeida, Helen
    Royo Dachary, Pablo
    Serrano-Aullo, Trinidad
    Soker, Shay
    Baptista, Pedro M.
    [J]. NOVEL BIOMATERIALS FOR REGENERATIVE MEDICINE, 2018, 1077 : 421 - 449