Maximum likelihood estimation in a parametric stochastic trajectory model

被引:1
|
作者
Uney, Murat [1 ]
Millefiori, Leonardo M. [1 ]
Braca, Paolo [1 ]
机构
[1] NATO STO Ctr Maritime Res & Experimentat, Viale San Bartolomeo 400, I-19126 La Spezia, SP, Italy
来源
2019 SENSOR SIGNAL PROCESSING FOR DEFENCE CONFERENCE (SSPD) | 2019年
关键词
D O I
10.1109/sspd.2019.8751652
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, we consider maximum likelihood estimation of parameters in a stochastic trajectory model. The velocity paths are generated from an Ornstein-Uhlenbeck process and thus revert to a latent expected value. In addition to this expected velocity, parameters that specify the reversion characteristics and the process noise covariance determine the behaviour of typical trajectories of the model. Estimation of these parameters from trajectory samples facilitates learning of patterns and training of predictive models using trajectory data, e.g., automatic identification system (AIS) messages transmitted by vessels. We propose a six-degrees-of-freedom parameterisation and investigate the identifiability of these parameters using the Cram ' er-Rao bound matrix which we estimate using Monte Carlo methods. We demonstrate that some parameter configurations of interest are identifiable and their maximum likelihood estimate can be found using iterative optimisation algorithms. We demonstrate the efficacy of this approach on both simulated and real data.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Stochastic Maximum Likelihood (SML) parametric estimation of overlapped Doppler echoes
    Boyer, E
    Petitdidier, M
    Larzabal, P
    ANNALES GEOPHYSICAE, 2004, 22 (11) : 3983 - 3993
  • [2] A PARAMETRIC MODEL AND MAXIMUM LIKELIHOOD ESTIMATION OF NEURAL RATE FUNCTIONS
    Monk, Scott
    Leib, Harry
    2012 25TH IEEE CANADIAN CONFERENCE ON ELECTRICAL & COMPUTER ENGINEERING (CCECE), 2012,
  • [3] Penalized maximum likelihood estimation of a stochastic multivariate regression model
    Hansen, Elizabeth
    Chan, Kung-Sik
    STATISTICS & PROBABILITY LETTERS, 2010, 80 (21-22) : 1643 - 1649
  • [4] An efficient method for maximum likelihood estimation of a stochastic volatility model
    Huang, Shirley J.
    Yu, Jun
    STATISTICS AND ITS INTERFACE, 2008, 1 (02) : 289 - 296
  • [5] Maximum likelihood estimation for stochastic Lotka–Volterra model with jumps
    Huiyan Zhao
    Chongqi Zhang
    Limin Wen
    Advances in Difference Equations, 2018
  • [6] Maximum-likelihood estimation of multiscale stochastic model parameters
    Chou, KC
    PROCEEDINGS OF THE IEEE-SP INTERNATIONAL SYMPOSIUM ON TIME-FREQUENCY AND TIME-SCALE ANALYSIS, 1996, : 17 - 20
  • [7] Maximum likelihood estimation of a generalized threshold stochastic regression model
    Samia, Noelle I.
    Chan, Kung-Sik
    BIOMETRIKA, 2011, 98 (02) : 433 - 448
  • [8] Maximum likelihood estimation of a Stochastic integrate-and-fire neural model
    Pillow, JW
    Paninski, L
    Simoncelli, EP
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 16, 2004, 16 : 1311 - 1318
  • [9] Maximum likelihood estimation for stochastic Lotka-Volterra model with jumps
    Zhao, Huiyan
    Zhang, Chongqi
    Wen, Limin
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [10] On the Approximate Maximum Likelihood Estimation in Stochastic Model of SQL Injection Attacks
    Sonoda, Michio
    Matsuda, Takeshi
    Koizumi, Daiki
    2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2016, : 802 - 807