Prolongation structures of a generalized coupled Korteweg-de Vries equation and Miura transformation

被引:15
作者
Cao, Yuan-Hao [2 ]
Wang, Deng-Shan [1 ]
机构
[1] Cent Univ Finance & Econ, CEMA, Beijing 100081, Peoples R China
[2] Chinese Acad Sci, KLMM, Beijing 100049, Peoples R China
关键词
Prolongation structure; Lax pair; KdV equation; Miura transformation; NONLINEAR EVOLUTION-EQUATIONS; KDV SYSTEMS;
D O I
10.1016/j.cnsns.2009.10.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the prolongation structures of a generalized coupled Korteweg-de Vries (KdV) equation are investigated and two integrable coupled KdV equations associated with their Lax pairs are derived. Furthermore, a Miura transformation related to a integrable coupled KdV equation is derived, from which a new coupled modified KdV equations is obtained. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:2344 / 2349
页数:6
相关论文
共 14 条
[1]  
[Anonymous], TEOR MAT FIZ
[2]  
Fordy A.P., 1990, SOLITON THEORY SURVE
[3]  
GEAR JA, 1984, STUD APPL MATH, V70, P235
[4]  
Gurses M, 1998, J MATH PHYS, V39, P2103, DOI 10.1063/1.532278
[5]   Non-autonomous Svinolupov-Jordan KdV systems [J].
Gürses, M ;
Karasu, A ;
Turhan, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (28) :5705-5711
[6]   Integrable KdV systems:: Recursion operators of degree four [J].
Gürses, M ;
Karasu, A .
PHYSICS LETTERS A, 1999, 251 (04) :247-249
[7]   Degenerate Svinolupov KdV systems [J].
Gurses, M ;
Karasu, A .
PHYSICS LETTERS A, 1996, 214 (1-2) :21-26
[8]   PSEUDOPOTENTIALS OF ESTABROOK AND WAHLQUIST, GEOMETRY OF SOLITONS, AND THEORY OF CONNECTIONS [J].
HERMANN, R .
PHYSICAL REVIEW LETTERS, 1976, 36 (15) :835-836
[9]  
HUMPHREYS JE, 1972, GTM, V9
[10]   PROLONGATION STRUCTURES AND NONLINEAR EVOLUTION EQUATIONS IN 2 SPATIAL DIMENSIONS [J].
MORRIS, HC .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (10) :1870-1872