Lie symmetry analysis of the Lundgren-Monin-Novikov equations for multi-point probability density functions of turbulent flow

被引:12
作者
Waclawczyk, M. [1 ]
Grebenev, V. N. [2 ,3 ]
Oberlack, M. [4 ,5 ]
机构
[1] Univ Warsaw, Fac Phys, Inst Geophys, Pasteura 7, PL-02093 Warsaw, Poland
[2] Russian Acad Sci, Inst Computat Technol, Lavrentjev Ave 6, Novosibirsk 630090, Russia
[3] Univ Fed Amazonas, BR-69067005 Manaus, Amazonas, Brazil
[4] Tech Univ Darmstadt, Chair Fluid Dynam, Dept Mech Engn, Otto Berndt Str 2, D-64287 Darmstadt, Germany
[5] Tech Univ Darmstadt, Grad Sch Computat Engn, Dolivostr 15, D-64293 Darmstadt, Germany
关键词
turbulence; Lundgren-Monin-Novikov hierarchy; probability density functions; Lie group analysis; integro-differential equations; INVARIANT SOLUTIONS;
D O I
10.1088/1751-8121/aa62f4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The problem of turbulence statistics described by the Lundgren-Monin-Novikov (LMN) hierarchy of integro-differential equations is studied in terms of its group properties. For this we perform a Lie group analysis of a truncated LMN chain which presents the first two equations in an infinite set of integro-differential equations for the multi-point probability density functions (pdf's) of velocity. A complete set of point transformations is derived for the one-point pdf's and the independent variables: sample space of velocity, space and time. For this purpose we use a direct method based on the canonical Lie-Backlund operator. Due to the one-way coupling of correlation equations, the present results are complete in the sense that no additional symmetries exist for the first leading equation, even if the full infinite hierarchy is considered.
引用
收藏
页数:23
相关论文
共 32 条
[1]  
[Anonymous], 2010, SYMMETRIES INTEGRODI
[2]   Turbulent plane Couette flow at moderately high Reynolds number [J].
Avsarkisov, V. ;
Hoyas, S. ;
Oberlack, M. ;
Garcia-Galache, J. P. .
JOURNAL OF FLUID MECHANICS, 2014, 751 :R1
[3]   Inverse turbulent cascades and conformally invariant curves [J].
Bernard, D. ;
Boffetta, G. ;
Celani, A. ;
Falkovich, G. .
PHYSICAL REVIEW LETTERS, 2007, 98 (02)
[4]   On group invariant solutions of the Boltzmann equation [J].
Bobylev, AV ;
Caraffini, GL ;
Spiga, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (06) :2787-2795
[5]  
Boyko V, 2000, P I MATH NAS UKRAINE, V30, P99
[6]   Conformal invariance in hydrodynamic turbulence [J].
Falkovich, G. .
RUSSIAN MATHEMATICAL SURVEYS, 2007, 62 (03) :497-510
[7]   Symmetries of the turbulent state [J].
Falkovich, Gregory .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (12)
[8]   The Lundgren-Monin-Novikov hierarchy: Kinetic equations for turbulence [J].
Friedrich, Rudolf ;
Daitche, Anton ;
Kamps, Oliver ;
Luelff, Johannes ;
Vosskuhle, Michel ;
Wilczek, Michael .
COMPTES RENDUS PHYSIQUE, 2012, 13 (9-10) :929-953
[9]  
Fushchych W, 1997, J NONLINEAR MATH PHY, V4, P124
[10]   Lie-point symmetries and stochastic differential equations [J].
Gaeta, G ;
Quintero, NR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (48) :8485-8505