On the stability of implicit-explicit linear multistep methods

被引:128
作者
Frank, J
Hundsdorfer, W
Verwer, JG
机构
[1] CWI, 1090 GB Amsterdam
[2] Delft University of Technology, Fac. of Tech. Math. and Informatics, 2600 GA Delft
关键词
implicit-explicit methods; linear multistep methods; method of lines; stability;
D O I
10.1016/S0168-9274(97)00059-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In many applications, such as atmospheric chemistry, large systems of ordinary differential equations (ODEs) with both stiff and nonstiff parts have to be solved numerically. A popular approach in such cases is to integrate the stiff parts implicitly and the nonstiff parts explicitly. In this paper we study a class of implicit-explicit (IMEX) linear multistep methods intended for such applications. The paper focuses on the linear stability of popular second order methods like extrapolated BDF, Crank-Nicolson leap-frog and a particular class of Adams methods. We present results for problems with decoupled eigenvalues and comment on some specific CFL restrictions associated with advection terms. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:193 / 205
页数:13
相关论文
共 12 条
[1]  
Akrivis G, 1995, 9522 U RENN
[2]   IMPLICIT EXPLICIT METHODS FOR TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS [J].
ASCHER, UM ;
RUUTH, SJ ;
WETTON, BTR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (03) :797-823
[3]   AN IMPLICIT-EXPLICIT MULTISTEP METHOD OF THE APPROXIMATION OF PARABOLIC EQUATIONS [J].
CROUZEIX, M .
NUMERISCHE MATHEMATIK, 1980, 35 (03) :257-276
[4]  
Hairer E., 1991, SOLVING ORDINARY DIF
[5]  
HAIRER E., 1987, SOLVING ORDINARY DIF
[6]   A NOTE ON SPLITTING ERRORS FOR ADVECTION-REACTION EQUATIONS [J].
HUNDSDORFER, W ;
VERWER, JG .
APPLIED NUMERICAL MATHEMATICS, 1995, 18 (1-3) :191-199
[7]  
LAMBERT JD, 1991, NUMERICAL METHODS OR
[8]  
Nevanlinna O., 1979, BIT (Nordisk Tidskrift for Informationsbehandling), V19, P53, DOI 10.1007/BF01931222
[10]   An implicit explicit approach for atmospheric transport-chemistry problems [J].
Verwer, JG ;
Blom, JG ;
Hundsdorfer, W .
APPLIED NUMERICAL MATHEMATICS, 1996, 20 (1-2) :191-209