Magnetic Coupling in Colloidal Clusters for Hierarchical Self-Assembly

被引:18
|
作者
Donaldson, Joe G. [1 ]
Schall, Peter [2 ]
Rossi, Laura [1 ]
机构
[1] Delft Univ Technol, Dept Chem Engn, NL-2629 HZ Delft, Netherlands
[2] Univ Amsterdam, Inst Phys, NL-1098 XH Amsterdam, Netherlands
关键词
colloids; magnetism; dipolar assembly; self-assembly; spherical confinement; hierarchical assembly;
D O I
10.1021/acsnano.0c09952
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Manipulating the way in which colloidal particles self-organize is a central challenge in the design of functional soft materials. Meeting this challenge requires the use of building blocks that interact with one another in a highly specific manner. Their fabrication, however, is limited by the complexity of the available synthesis procedures. Here, we demonstrate that, starting from experimentally available magnetic colloids, we can create a variety of complex building blocks suitable for hierarchical self-organization through a simple scalable process. Using computer simulations, we compress spherical and cubic magnetic colloids in spherical confinement, and investigate their suitability to form small clusters with reproducible structural and magnetic properties. We find that, while the structure of these clusters is highly reproducible, their magnetic character depends on the particle shape. Only spherical particles have the rotational degrees of freedom to produce consistent magnetic configurations, whereas cubic particles frustrate the minimization of the cluster energy, resulting in various magnetic configurations. To highlight their potential for self-assembly, we demonstrate that already clusters of three magnetic particles form highly nontrivial Archimedean lattices, namely, staggered kagome, bounce, and honeycomb, when focusing on different aspects of the same monolayer structure. The work presented here offers a conceptually different way to design materials by utilizing preassembled magnetic building blocks that can readily self-organize into complex structures.
引用
收藏
页码:4989 / 4999
页数:11
相关论文
共 50 条
  • [31] Magnetically tunable self-assembly of colloidal rings
    Li, Kwan H.
    Yellen, Benjamin B.
    APPLIED PHYSICS LETTERS, 2010, 97 (08)
  • [32] Self-assembly of latex particles for colloidal crystals
    Zhirong Lia
    Particuology, 2011, 9 (06) : 559 - 565
  • [33] Self-assembly of colloidal particles on different surfaces
    Ulmeanu, M.
    Zamfirescu, M.
    Medianu, R.
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2009, 338 (1-3) : 87 - 92
  • [34] Self-assembly of latex particles for colloidal crystals
    Li, Zhirong
    Wang, Jingxia
    Song, Yanlin
    PARTICUOLOGY, 2011, 9 (06) : 559 - 565
  • [35] Vesicular Self-Assembly of Colloidal Amphiphiles in Microfluidics
    He, Jie
    Wang, Lei
    Wei, Zengjiang
    Yang, Yunlong
    Wang, Chaoyang
    Han, Xiaojun
    Nie, Zhihong
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (19) : 9746 - 9751
  • [36] Self-Assembly Dynamics of Reconfigurable Colloidal Molecules
    Chakraborty, Indrani
    Pearce, Daniel J. G.
    Verweij, Ruben W.
    Matysik, Sabine C.
    Giomi, Luca
    Kraft, Daniela J.
    ACS NANO, 2022, 16 (02) : 2471 - 2480
  • [37] Precursor Self-Assembly Identified as a General Pathway for Colloidal Semiconductor Magic-Size Clusters
    Wang, Linxi
    Hui, Juan
    Tang, Junbin
    Rowell, Nelson
    Zhang, Baowei
    Zhu, Tingting
    Zhang, Meng
    Hao, Xiaoyu
    Fan, Hongsong
    Zeng, Jianrong
    Han, Shuo
    Yu, Kui
    ADVANCED SCIENCE, 2018, 5 (12)
  • [38] Self-Assembly of Precision Noble Metal Nanoclusters: Hierarchical Structural Complexity, Colloidal Superstructures, and Applications
    Rival, Jose V.
    Mymoona, Paloli
    Lakshmi, Kavalloor Murali
    Nonappa
    Pradeep, Thalappil
    Shibu, Edakkattuparambil Sidharth
    SMALL, 2021, 17 (27)
  • [39] Magnetic assisted self-assembly
    Furlan, M.
    Lattuada, M.
    NANOTECHNOLOGY 2011: ADVANCED MATERIALS, CNTS, PARTICLES, FILMS AND COMPOSITES, NSTI-NANOTECH 2011, VOL 1, 2011, : 519 - 522
  • [40] A Review on Self-Assembly of Colloidal Nanoparticles into Clusters, Patterns, and Films: Emerging Synthesis Techniques and Applications
    Borah, Rituraj
    Raj, A. G. Karthick
    Minja, Antony Charles
    Verbruggen, Sammy W.
    SMALL METHODS, 2023, 7 (06)