Magnetic Coupling in Colloidal Clusters for Hierarchical Self-Assembly

被引:18
|
作者
Donaldson, Joe G. [1 ]
Schall, Peter [2 ]
Rossi, Laura [1 ]
机构
[1] Delft Univ Technol, Dept Chem Engn, NL-2629 HZ Delft, Netherlands
[2] Univ Amsterdam, Inst Phys, NL-1098 XH Amsterdam, Netherlands
关键词
colloids; magnetism; dipolar assembly; self-assembly; spherical confinement; hierarchical assembly;
D O I
10.1021/acsnano.0c09952
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Manipulating the way in which colloidal particles self-organize is a central challenge in the design of functional soft materials. Meeting this challenge requires the use of building blocks that interact with one another in a highly specific manner. Their fabrication, however, is limited by the complexity of the available synthesis procedures. Here, we demonstrate that, starting from experimentally available magnetic colloids, we can create a variety of complex building blocks suitable for hierarchical self-organization through a simple scalable process. Using computer simulations, we compress spherical and cubic magnetic colloids in spherical confinement, and investigate their suitability to form small clusters with reproducible structural and magnetic properties. We find that, while the structure of these clusters is highly reproducible, their magnetic character depends on the particle shape. Only spherical particles have the rotational degrees of freedom to produce consistent magnetic configurations, whereas cubic particles frustrate the minimization of the cluster energy, resulting in various magnetic configurations. To highlight their potential for self-assembly, we demonstrate that already clusters of three magnetic particles form highly nontrivial Archimedean lattices, namely, staggered kagome, bounce, and honeycomb, when focusing on different aspects of the same monolayer structure. The work presented here offers a conceptually different way to design materials by utilizing preassembled magnetic building blocks that can readily self-organize into complex structures.
引用
收藏
页码:4989 / 4999
页数:11
相关论文
共 50 条
  • [21] Dewetting-Induced Hierarchical Self-Assembly of Block Copolymers Templated by Colloidal Crystals
    Kim, Dong Hwan
    Kwon, Hong Gu
    Choi, Hong Kyoon
    POLYMERS, 2023, 15 (04)
  • [22] Self-Assembly of Colloidal Spheres toward Fabrication of Hierarchical and Periodic Nanostructures for Technological Applications
    Liang, Xiaoguang
    Dong, Ruoting
    Ho, Johnny C.
    ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (03):
  • [23] Self-assembly of quaternary (LiOSN) clusters
    Brask, JK
    Chivers, T
    Schatte, G
    PHOSPHORUS SULFUR AND SILICON AND THE RELATED ELEMENTS, 1997, 124 : 203 - 212
  • [24] Molecular coordination of hierarchical self-assembly
    MacLennan, Bruce J.
    Nano Communication Networks, 2012, 3 (02) : 116 - 128
  • [25] Stochastic self-assembly of incommensurate clusters
    D'Orsogna, M. R.
    Lakatos, G.
    Chou, T.
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (08)
  • [26] PARALLELISM AND TIME IN HIERARCHICAL SELF-ASSEMBLY
    Chen, Ho-Lin
    Doty, David
    SIAM JOURNAL ON COMPUTING, 2017, 46 (02) : 661 - 709
  • [27] Hollow capsule processing through colloidal templating and self-assembly
    Caruso, F
    CHEMISTRY-A EUROPEAN JOURNAL, 2000, 6 (03) : 413 - 419
  • [28] Patchy colloidal particles for programmed self-assembly
    Duguet, Etienne
    Hubert, Celine
    Chomette, Cyril
    Perro, Adeline
    Ravaine, Serge
    COMPTES RENDUS CHIMIE, 2016, 19 (1-2) : 173 - 182
  • [29] Directional Self-Assembly of a Colloidal Metal-Organic Framework
    Yanai, Nobuhiro
    Granick, Steve
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (23) : 5638 - 5641
  • [30] Phoretic self-assembly of active colloidal molecules*
    Lei, Lijie
    Wang, Shuo
    Zhang, Xinyuan
    Lai, Wenjie
    Wu, Jinyu
    Gao, Yongxiang
    CHINESE PHYSICS B, 2021, 30 (05)