ITK-SNAP An interactive medical image segmentation tool to meet the need for expert-guided segmentation of complex medical images

被引:107
作者
Yushkevich, Paul A. [1 ]
Gerig, Guido [2 ]
机构
[1] Univ Penn, Dept Radiol, Penn Image Comp & Sci Lab, Philadelphia, PA 19104 USA
[2] NYU, Tandon Sch Engn, Dept Comp Sci & Engn, New York, NY 10003 USA
基金
美国国家卫生研究院;
关键词
BREAST-CANCER RECURRENCE; ONCOTYPE DX;
D O I
10.1109/MPUL.2017.2701493
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Imaging is a crucial tool in medicine and biomedical research. Magnetic resonance imaging (MRI), computational tomography (CT), proton emission tomography (PET), and ultrasound are routinely used not only to diagnose disease but also to plan and guide surgical interventions, track disease progression, measure the response of the body to treatment, and understand how genetic and environmental factors relate to anatomical and functional phenotypes. © 2017 IEEE.
引用
收藏
页码:54 / 57
页数:4
相关论文
共 11 条
[1]   A Multichannel Markov Random Field Framework for Tumor Segmentation With an Application to Classification of Gene Expression-Based Breast Cancer Recurrence Risk [J].
Ashraf, Ahmed B. ;
Gavenonis, Sara C. ;
Daye, Dania ;
Mies, Carolyn ;
Rosen, Mark A. ;
Kontos, Despina .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (04) :637-648
[2]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[3]   Geodesic active contours [J].
Caselles, V ;
Kimmel, R ;
Sapiro, G .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1997, 22 (01) :61-79
[4]  
Criminisil A, 2011, FOUND TRENDS COMPUT, V7, P81, DOI [10.1561/0600000035, 10.1501/0000000035]
[5]   Multi-atlas segmentation of biomedical images: A survey [J].
Eugenio Iglesias, Juan ;
Sabuncu, Mert R. .
MEDICAL IMAGE ANALYSIS, 2015, 24 (01) :205-219
[6]   Algorithms for prediction of the Oncotype DX recurrence score using clinicopathologic data: a review and comparison using an independent dataset [J].
Harowicz, Michael R. ;
Robinson, Timothy J. ;
Dinan, Michaela A. ;
Saha, Ashirbani ;
Marks, Jeffrey R. ;
Marcom, P. Kelly ;
Mazurowski, Maciej A. .
BREAST CANCER RESEARCH AND TREATMENT, 2017, 162 (01) :1-10
[7]   Statistical shape models for 3D medical image segmentation: A review [J].
Heimann, Tobias ;
Meinzer, Hans-Peter .
MEDICAL IMAGE ANALYSIS, 2009, 13 (04) :543-563
[8]   MR Imaging Radiomics Signatures for Predicting the Risk of Breast Cancer Recurrence as Given by Research Versions of MammaPrint, Oncotype DX, and PAM50 Gene Assays [J].
Li, Hui ;
Zhu, Yitan ;
Burnside, Elizabeth S. ;
Drukker, Karen ;
Hoadley, Katherine A. ;
Fan, Cheng ;
Conzen, Suzanne D. ;
Whitman, Gary J. ;
Sutton, Elizabeth J. ;
Net, Jose M. ;
Ganott, Marie ;
Huang, Erich ;
Morris, Elizabeth A. ;
Perou, Charles M. ;
Ji, Yuan ;
Giger, Maryellen L. .
RADIOLOGY, 2016, 281 (02) :382-391
[9]   The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) [J].
Menze, Bjoern H. ;
Jakab, Andras ;
Bauer, Stefan ;
Kalpathy-Cramer, Jayashree ;
Farahani, Keyvan ;
Kirby, Justin ;
Burren, Yuliya ;
Porz, Nicole ;
Slotboom, Johannes ;
Wiest, Roland ;
Lanczi, Levente ;
Gerstner, Elizabeth ;
Weber, Marc-Andre ;
Arbel, Tal ;
Avants, Brian B. ;
Ayache, Nicholas ;
Buendia, Patricia ;
Collins, D. Louis ;
Cordier, Nicolas ;
Corso, Jason J. ;
Criminisi, Antonio ;
Das, Tilak ;
Delingette, Herve ;
Demiralp, Cagatay ;
Durst, Christopher R. ;
Dojat, Michel ;
Doyle, Senan ;
Festa, Joana ;
Forbes, Florence ;
Geremia, Ezequiel ;
Glocker, Ben ;
Golland, Polina ;
Guo, Xiaotao ;
Hamamci, Andac ;
Iftekharuddin, Khan M. ;
Jena, Raj ;
John, Nigel M. ;
Konukoglu, Ender ;
Lashkari, Danial ;
Mariz, Jose Antonio ;
Meier, Raphael ;
Pereira, Sergio ;
Precup, Doina ;
Price, Stephen J. ;
Raviv, Tammy Riklin ;
Reza, Syed M. S. ;
Ryan, Michael ;
Sarikaya, Duygu ;
Schwartz, Lawrence ;
Shin, Hoo-Chang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (10) :1993-2024
[10]  
Sethian JA., 1999, LEVEL SET METHODS FA