Hydrogen evolution reaction on Pt and Ru in alkali with volmer-step promotors and electronic structure modulators

被引:50
作者
Anantharaj, Sengeni [1 ,2 ]
机构
[1] Waseda Univ, Waseda Res Inst Sci & Engn, Shinjuku Ku, 3-4-1 Okubo, Tokyo 1698555, Japan
[2] Waseda Univ, Dept Appl Chem, Shinjuku Ku, 3-4-1 Okubo, Tokyo 1698555, Japan
关键词
Electrocatalysis; Hydrogen evolution reaction; Pt; Ru; Metal chalcogenides; Metal phosphides; Metal hydroxides; EFFICIENT; ELECTROCATALYSTS; NI(OH)(2); NANOPARTICLES; PERFORMANCE; REDUCTION; CATALYSTS; DENSITY;
D O I
10.1016/j.coelec.2022.100961
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Alkaline water electrolysis despite having a variety of choices for anodic oxygen evolution reaction (OER) catalysts out of non-precious metals suffers significantly due to the poor kinetics of cathodic hydrogen evolution reaction (HER) even with the state-of-the-art Pt and equally active Ru. The Volmer-step (water dissociation (WD) coupled proton adsorption) of alkaline HER is mostly the rate-determining step (RDS) and costs most of the work required. In this review, recent developments in improving the HER kinetics of Pt and Ru with Volmer-step promotors and electronic structure modulators have been comprehensively analyzed and critically presented with the challenges and prospects.
引用
收藏
页数:8
相关论文
共 61 条
[1]  
Adzic R., 2020, Platinum Monolayer Electrocatalysts, P35
[2]   Ru-tweaking of non-precious materials: the tale of a strategy that ensures both cost and energy efficiency in electrocatalytic water splitting [J].
Anantharaj, S. .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (11) :6710-6731
[3]   "The Fe Effect": A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts [J].
Anantharaj, Sengeni ;
Kundu, Subrata ;
Noda, Suguru .
NANO ENERGY, 2021, 80
[4]   Strategies and Perspectives to Catch the Missing Pieces in Energy-Efficient Hydrogen Evolution Reaction in Alkaline Media [J].
Anantharaj, Sengeni ;
Noda, Suguru ;
Jothi, Vasanth Rajendiran ;
Yi, SungChul ;
Driess, Matthias ;
Menezes, Prashanth W. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (35) :18981-19006
[5]   Amorphous Catalysts and Electrochemical Water Splitting: An Untold Story of Harmony [J].
Anantharaj, Sengeni ;
Noda, Suguru .
SMALL, 2020, 16 (02)
[6]   Evolution of layered double hydroxides (LDH) as high performance water oxidation electrocatalysts: A review with insights on structure, activity and mechanism [J].
Anantharaj, Sengeni ;
Karthick, Kannimuthu ;
Kundu, Subrata .
MATERIALS TODAY ENERGY, 2017, 6 :1-26
[7]   Principles of Dynamic Heterogeneous Catalysis: Surface Resonance and Turnover Frequency Response [J].
Ardagh, M. Alexander ;
Abdelrahman, Omar A. ;
Dauenhauer, Paul J. .
ACS CATALYSIS, 2019, 9 (08) :6929-6937
[8]   Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction [J].
Bae, Seo-Yoon ;
Mahmood, Javeed ;
Jeon, In-Yup ;
Baek, Jong-Beom .
NANOSCALE HORIZONS, 2020, 5 (01) :43-56
[9]   Ru-doped 3D flower-like bimetallic phosphide with a climbing effect on overall water splitting [J].
Chen, Ding ;
Lu, Ruihu ;
Pu, Zonghua ;
Zhu, Jiawei ;
Li, Hai-Wen ;
Liu, Fang ;
Hu, Song ;
Luo, Xu ;
Wu, Jinsong ;
Zhao, Yan ;
Mu, Shichun .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 279
[10]   Ultralow Ru Loading Transition Metal Phosphides as High-Efficient Bifunctional Electrocatalyst for a Solar-to-Hydrogen Generation System [J].
Chen, Ding ;
Pu, Zonghua ;
Lu, Ruihu ;
Ji, Pengxia ;
Wang, Pengyan ;
Zhu, Jiawei ;
Lin, Can ;
Li, Hai-Wen ;
Zhou, Xiangang ;
Hu, Zhiyi ;
Xia, Fanjie ;
Wu, Jingsong ;
Mu, Shichun .
ADVANCED ENERGY MATERIALS, 2020, 10 (28)