Goppa geometric codes achieving the Gilbert-Varshamov bound

被引:7
作者
Xing, CP [1 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore 117543, Singapore
[2] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
关键词
bounds; curves; divisors; geometry codes; points;
D O I
10.1109/TIT.2004.838351
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Based on s-zeta-functions of curves over finite fields, we show that Goppa geometry codes achieve the q-ary Gilbert-Varshamov bound for all prime powers q (including q = 2).
引用
收藏
页码:259 / 264
页数:6
相关论文
共 10 条
[1]  
GOPPA VD, 1981, DOKL AKAD NAUK SSSR+, V259, P1289
[2]  
Mac Williams F., 1977, THEORY ERROR CORRECT
[3]   Towers of global function fields with asymptotically many rational places and an improvement on the Gilbert-Varshamov bound [J].
Niederreiter, H ;
Xing, CP .
MATHEMATISCHE NACHRICHTEN, 1998, 195 :171-186
[4]  
NIEDERREITER H, 2001, RATIONAL POINTS CURV
[5]  
Stichtenoth H., 1993, Algebraic function fields and codes
[6]  
Tsfasman M. A., 1991, ALGEBRAIC GEOMETRIC
[7]   MODULAR-CURVES, SHIMURA CURVES, AND GOPPA CODES, BETTER THAN VARSHAMOV-GILBERT BOUND [J].
TSFASMAN, MA ;
VLADUT, SG ;
ZINK, T .
MATHEMATISCHE NACHRICHTEN, 1982, 109 :21-28
[8]  
Vladut S. G., 1987, Problems of Information Transmission, V23, P22
[9]  
Vleduts SG., 1985, Journal of Soviet Mathematics, V30, P2611
[10]   Algebraic-geometry codes with asymptotic parameters better than the Gilbert-Varshamov and the Tsfasman-Vladut-Zink bounds [J].
Xing, CP .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (01) :347-352