Low areal densities of InAs quantum dots on GaAs(100) prepared by molecular beam epitaxy

被引:5
作者
Verma, A. K. [1 ]
Bopp, F. [2 ,3 ]
Finley, J. J. [2 ,3 ]
Jonas, B. [1 ]
Zrenner, A. [1 ]
Reuter, D. [1 ]
机构
[1] Paderborn Univ, Dept Phys, Warburger Str 100, D-33098 Paderborn, Germany
[2] Tech Univ Munich, Walter Schottky Inst, Coulombwall 4, D-85748 Garching, Germany
[3] Tech Univ Munich, Phys Dept, Coulombwall 4, D-85748 Garching, Germany
关键词
Nanostructures; Molecular beam epitaxy; Quantum dots; Semiconducting III-V materials; Semiconducting gallium arsenide; SIZE;
D O I
10.1016/j.jcrysgro.2022.126715
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
We report on a comparison of different In-deposition schemes to achieve low areal densities of self-assembled InAs quantum dots (QDs) on GaAs(100) via the Stranski-Krastanov growth mode employing solid source molecular beam epitaxy. We could realize densities in the range of 10(7)-10(8) QDs/cm(2) utilizing homogeneous In deposition and an annealing step. At least on 70% of a 3 '' wafer the density was between 1 x 10(7 )and 1 x 10(8) QDs/cm(2). To achieve this, the In amount and the substrate temperature were controlled precisely. With inhomogeneous In-deposition via growing without sample rotation, we obtained low QD densities reproducible on a small fraction of the wafer surface. For a full-gradient, i.e., depositing the full In amount without rotation, the low-density area amounts in the best case to 10% of the overall wafer surface, whereas for a half-gradient, i.e. only half the In amount is deposited without rotation, it is 15%. The more In is deposited with substrate rotation, the less reproducible becomes the position of the low-density region on the wafer.
引用
收藏
页数:5
相关论文
共 15 条
[1]   Maximization of the InAs quantum-dot density through the growth of an intentionally non-homogeneous sample [J].
da Silva, MJ ;
Quivy, AA ;
González-Borrero, PP ;
Marega, E .
JOURNAL OF CRYSTAL GROWTH, 2002, 236 (1-3) :41-45
[2]   Influence of As4 flux on the growth kinetics, structure, and optical properties of InAs/GaAs quantum dots [J].
Garcia, A. ;
Mateo, C. M. ;
Defensor, M. ;
Salvador, A. ;
Hui, H. K. ;
Boothroyd, C. B. ;
Philpott, E. .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (07)
[3]   CRITICAL LAYER THICKNESS FOR SELF-ASSEMBLED INAS ISLANDS ON GAAS [J].
LEONARD, D ;
POND, K ;
PETROFF, PM .
PHYSICAL REVIEW B, 1994, 50 (16) :11687-11692
[4]   Techniques for epitaxial site-selective growth of quantum dots [J].
McCabe, Lauren N. ;
Zide, Joshua M. O. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2021, 39 (01)
[5]  
Michler P, 2009, NANOSCI TECHNOL, P1, DOI 10.1007/978-3-540-87446-1
[6]  
Michler P., 2003, SINGLE QUANTUM DOTS, Vvol 90
[7]  
Rostami A, 2011, ENG MATER, P1, DOI 10.1007/978-3-642-14925-2
[8]   Size distribution of coherently strained InAs quantum dots [J].
Schmidt, KH ;
Medeiros-Ribeiro, G ;
Kunze, U ;
Abstreiter, G ;
Hagn, M ;
Petroff, PM .
JOURNAL OF APPLIED PHYSICS, 1998, 84 (08) :4268-4272
[9]   Single photon sources with single semiconductor quantum dots [J].
Shan, Guang-Cun ;
Yin, Zhang-Qi ;
Shek, Chan Hung ;
Huang, Wei .
FRONTIERS OF PHYSICS, 2014, 9 (02) :170-193
[10]   Vertical-external-cavity surface-emitting lasers and quantum dot lasers [J].
Guangcun Shan ;
Xinghai Zhao ;
Mingjun Hu ;
Chan-Hung Shek ;
Wei Huang .
Frontiers of Optoelectronics, 2012, 5 (2) :157-170