Temperature-independent ytterbium valence in YbGaGe

被引:5
|
作者
Doyle, B. P.
Carleschi, E.
Magnano, E.
Malvestuto, M.
Dee, A. A.
Wills, A. S.
Janssen, Y.
Canfield, P. C.
机构
[1] CNR, INFM, Lab Nazl TASC, I-34012 Basovizza, TS, Italy
[2] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy
[3] Sincrotrone Trieste SCpA, I-34012 Basovizza, TS, Italy
[4] UCL, Dept Chem, London WC1H 0AJ, England
[5] Royal Inst Great Britain, Davy Faraday Res Lab, London W1S 4BS, England
[6] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France
[7] Iowa State Univ, Ames Lab, Ames, IA 50011 USA
来源
PHYSICAL REVIEW B | 2007年 / 75卷 / 23期
关键词
D O I
10.1103/PhysRevB.75.235109
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We have determined the ytterbium valence as a function of temperature in the reported near-zero thermal expansion material YbGaGe using x-ray photoemission at various incident photon energies. The Yb 3d, 4d, and 4f levels, which directly yield the Yb valence, have been measured. Careful analysis enabled the clear separation of surface and bulk contributions. Resonant photoemission at the 4d-4f absorption edge was used to enhance the low contribution of the Yb(3+) component. Contrary to the initially proposed Yb valence transition, we find no change in the valence from room temperature down to 115 K.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A TEMPERATURE-INDEPENDENT CONCENTRATION UNIT
    BLUMBERG, AA
    SISKA, PE
    SANFILIP.J
    JOURNAL OF CHEMICAL EDUCATION, 1965, 42 (08) : 420 - &
  • [2] ON TEMPERATURE-INDEPENDENT GROWTH OF PHYTOPLANKTON
    GIBSON, CE
    FOY, RH
    JOURNAL OF PLANKTON RESEARCH, 1989, 11 (03) : 605 - 607
  • [3] TEMPERATURE-INDEPENDENT PARAMAGNETISM IN NICKELECENE
    ZVARYKINA, AV
    KARIMOV, YS
    LEONOVA, EV
    LYUBOVSK.RB
    SOVIET PHYSICS SOLID STATE,USSR, 1970, 12 (02): : 385 - +
  • [4] Temperature-independent positioning accuracy
    Krug, Rainer
    Werkstatt und Betrieb, 1998, 131 (11): : 1041 - 1042
  • [5] Temperature-independent thermal radiation
    Shahsafi, Alireza
    Roney, Patrick
    Zhou, You
    Zhang, Zhen
    Xiao, Yuzhe
    Wan, Chenghao
    Wambold, Raymond
    Salman, Jad
    Yu, Zhaoning
    Li, Jiarui
    Sadowski, Jerzy T.
    Comin, Riccardo
    Ramanathan, Shriram
    Kats, Mikhail A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (52) : 26402 - 26406
  • [6] Temperature-independent component of the diaelastic effect
    Granato, A.V., 1600, Elsevier Science S.A., Lausanne, Switzerland (211-1):
  • [7] TEMPERATURE-INDEPENDENT RELATIVE HUMIDITY DETECTOR
    CHAN, SH
    VECCHIO, SR
    INSTRUMENTS & CONTROL SYSTEMS, 1970, 43 (08): : 41 - &
  • [8] Holey strain sensor is temperature-independent
    不详
    LASER FOCUS WORLD, 2006, 42 (03): : 13 - 13
  • [9] Temperature-independent broadband silicon modulator
    Yi, H. X.
    Li, T. T.
    Zhang, J. L.
    Wang, X. J.
    Zhou, Z.
    OPTICS COMMUNICATIONS, 2015, 340 : 107 - 109
  • [10] ECONOMICAL TEMPERATURE-INDEPENDENT LOGARITHMIC CIRCUIT
    KHAN, AA
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1984, 57 (05) : 709 - 712