Unveiling the effect of vacancy defects on structural, mechanical, electronic and diffusion properties of copper (I) iodide

被引:6
作者
Thomas, Siby [1 ,2 ]
Hildreth, Owen [1 ]
Zaeem, Mohsen Asle [1 ]
机构
[1] Colorado Sch Mines, Dept Mech Engn, 1500 Illinois St, Golden, CO 80401 USA
[2] Tech Univ Munich TUM, Dept Elect & Comp Engn, Karlstr 45-47, D-80333 Munich, Germany
基金
美国国家科学基金会;
关键词
CuI; Vacancy defects; Elastic constants; Electronic properties; Diffusion coefficients; OPTICAL-PROPERTIES; CRYSTAL-STRUCTURE; SELF-DIFFUSION; CUI; HALIDES; DENSITY;
D O I
10.1016/j.scriptamat.2022.114634
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Effects of vacancy defects on formation energies, mechanical stability, electronic properties and diffusion coefficients in copper (I) iodide (CuI) are investigated by first-principles calculations. A temperature-dependent behavior for vacancy formation energy is observed that is explained by the anharmonicity of lattice vibrations at high temperatures. Both Cu and I vacancy defects enhance the electronic conductivity. Cu diffusion is more predominant, because CuI has a less stable structure in the presence of Cu vacancy and atomic bonds of CuI also possess the least stability with Cu vacancies. This study found that the diffusivity increases with an increase of defect concentration and temperature, and Cu diffusion is dominant in CuI regardless of the type of the defect or temperature.
引用
收藏
页数:6
相关论文
共 48 条
[11]   Breakdown of the Arrhenius Law in Describing Vacancy Formation Energies: The Importance of Local Anharmonicity Revealed by Ab initio Thermodynamics [J].
Glensk, A. ;
Grabowski, B. ;
Hickel, T. ;
Neugebauer, J. .
PHYSICAL REVIEW X, 2014, 4 (01)
[12]   BAND-STRUCTURE AND OPTICAL-PROPERTIES OF TETRAHEDRALLY COORDINATED CU-HALIDES AND AG-HALIDES [J].
GOLDMANN, A .
PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1977, 81 (01) :9-47
[13]   Ab initio up to the melting point: Anharmonicity and vacancies in aluminum [J].
Grabowski, B. ;
Ismer, L. ;
Hickel, T. ;
Neugebauer, J. .
PHYSICAL REVIEW B, 2009, 79 (13)
[14]   Computational acceleration of prospective dopant discovery in cuprous iodide [J].
Grauzinyte, Migle ;
Botti, Silvana ;
Marques, Miguel A. L. ;
Goedecker, Stefan ;
Flores-Livas, Jose A. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (35) :18839-18849
[15]   Hubbard-Corrected DFT Energy Functionals: The LDA + U Description of Correlated Systems [J].
Himmetoglu, Burak ;
Floris, Andrea ;
de Gironcoli, Stefano ;
Cococcioni, Matteo .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2014, 114 (01) :14-49
[16]   First-principles study of γ-CuI for p-type transparent conducting materials [J].
Huang, Dan ;
Zhao, Yu-Jun ;
Li, Shen ;
Li, Chang-Sheng ;
Nie, Jian-Jun ;
Cai, Xin-Hua ;
Yao, Chun-Mei .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2012, 45 (14)
[17]   HIGH-PRESSURE POLYMORPHISM OF THE COPPER(I) HALIDES - A NEUTRON-DIFFRACTION STUDY TO SIMILAR-TO-10 GPA [J].
HULL, S ;
KEEN, DA .
PHYSICAL REVIEW B, 1994, 50 (09) :5868-5885
[18]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186
[19]   From ultrasoft pseudopotentials to the projector augmented-wave method [J].
Kresse, G ;
Joubert, D .
PHYSICAL REVIEW B, 1999, 59 (03) :1758-1775
[20]   Crystal structure of low-dimensional Cu(I) iodide: DFT prediction of cuprophilic interactions [J].
Kuganathan, Navaratnarajah ;
Green, Jennifer C. .
CHEMICAL COMMUNICATIONS, 2008, (21) :2432-2434