Ferritins constitute a broad superfamily of iron storage proteins, widespread in all domains of life, in aerobic or anaerobic organisms. Ferritins isolated from bacteria may be haem-free or contain a haem. In the latter case they are called bacterioferritins. The primary function of ferritins inside cells is to store iron in the ferric form. A secondary function may be detoxification of iron or protection against O-2 and its radical products. Indeed, for bacterioferritins this is likely to be their primary function. Ferritins and bacteroferritins have essentially the same architecture, assembling in a 24mer cluster to form a hollow, roughly spherical construction. In this review, special emphasis is given to the structure of the ferroxidase centres with native iron-containing sites, since oxidation of ferrous iron by molecular oxygen takes place in these sites. Although present in other ferritins, a specific entry route for iron, coupled with the ferroxidase reaction, has been proposed and described in some structural studies. Electrostatic calculations on a few selected proteins indicate further ion channels assumed to be an entry route in the later mineralization processes of core formation.