Convergence to equilibria of global solutions to a degenerate quasilinear Keller-Segel system

被引:10
作者
Jiang, Jie [1 ]
机构
[1] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Hubei, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2018年 / 69卷 / 05期
基金
中国国家自然科学基金;
关键词
Chemotaxis; Degenerate parabolic systems; Porous medium diffusion; Global solutions; Convergence to equilibria; PARABOLIC CHEMOTAXIS SYSTEM; BLOW-UP; LOGISTIC SOURCE; MODEL; BOUNDEDNESS; DIFFUSION; STABILIZATION; SENSITIVITY; EXISTENCE; BEHAVIOR;
D O I
10.1007/s00033-018-1025-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the longtime behavior of global weak solutions to initial- boundary value problems of the following degenerate quasilinear Keller- Segel system Here O. Rn is a bounded domain,. > 0 and m > max{1, 2- 2 n}. First, we establish the existence of global weak solution which additionally satisfies an energy dissipation inequality. Thanks to the energy inequality, we prove that the global weak solution will converge to an equilibrium as time goes to infinity if m = 2 and. < m m- 1 M m- 2 0, where M0 is the average mass of cells. The proof is based on an application of a slightly modified Lojasiewicz- Simon inequality of non- smooth type, where the requirement on compactness of the trajectory is weakened compared with those in Feireisl et al. ( J Differ Equ 236: 551- 569, 2007), Jiang and Zhang ( Asymptot Anal 65: 79- 102, 2009). Moreover, in the special case m = 2 and. < 2, convergence toward trivial solution ( M0,.M0) is verified by an alternative straightforward way.
引用
收藏
页数:20
相关论文
共 37 条
[1]   Attractor for a degenerate nonlinear diffusion problem with nonlinear boundary condition [J].
Andreu F. ;
Mazón J.M. ;
Simondon F. ;
Toledo J. .
Journal of Dynamics and Differential Equations, 1998, 10 (3) :347-377
[2]   CROSS DIFFUSION AND NONLINEAR DIFFUSION PREVENTING BLOW UP IN THE KELLER-SEGEL MODEL [J].
Antonio Carrillo, Jose ;
Hittmeir, Sabine ;
Juengel, Ansgar .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (12)
[3]   Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues [J].
Bellomo, N. ;
Bellouquid, A. ;
Tao, Y. ;
Winkler, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (09) :1663-1763
[4]   Dynamic and Steady States for Multi-Dimensional Keller-Segel Model with Diffusion Exponent m &gt; 0 [J].
Bian, Shen ;
Liu, Jian-Guo .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 323 (03) :1017-1070
[5]   Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with logistic source [J].
Cao, Xinru .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (01) :181-188
[6]  
Carrillo J. A., ARXIV160307767V1
[7]   Finite-time blow-up in a quasilinear system of chemotaxis [J].
Cieslak, Tomasz ;
Winkler, Michael .
NONLINEARITY, 2008, 21 (05) :1057-1076
[8]   Stabilization in a higher-dimensional quasilinear Keller-Segel system with exponentially decaying diffusivity and subcritical sensitivity [J].
Cieslak, Tomasz ;
Winkler, Michael .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 159 :129-144
[9]   Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions [J].
Cieslak, Tomasz ;
Stinner, Christian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (10) :5832-5851
[10]   Quasilinear nonuniformly parabolic system modelling chemotaxis [J].
Cieslak, Tomasz .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (02) :1410-1426