Magnetic field in a young circumbinary disk

被引:53
作者
Alves, F. O. [1 ]
Girart, J. M. [2 ,3 ]
Padovani, M. [4 ]
Galli, D. [4 ]
Franco, G. A. P. [5 ]
Caselli, P. [1 ]
Vlemmings, W. H. T. [6 ]
Zhang, Q. [7 ]
Wiesemeyer, H. [8 ]
机构
[1] Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany
[2] CSIC, ICE, Can Magrans S-N, Cerdanyola Del Valles 08193, Catalonia, Spain
[3] IEEC, Barcelona 08034, Catalonia, Spain
[4] INAF Osservatorio Astrofis Arcetri, Largo E Fermi 5, I-50125 Florence, Italy
[5] Univ Fed Minas Gerais, ICEx, Dept Fis, Caixa Postal 702, BR-30123970 Belo Horizonte, MG, Brazil
[6] Chalmers Univ Technol, Onsala Space Observ, Dept Earth & Space Sci, S-43992 Onsala, Sweden
[7] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA
[8] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
magnetic fields; polarization; scattering; instrumentation: interferometers; techniques: polarimetric; protoplanetary disks; RADIATIVE TORQUES; POLARIZATION;
D O I
10.1051/0004-6361/201832935
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Polarized continuum emission at millimeter-to-submillimeter wavelengths is usually attributed to thermal emission from dust grains aligned through radiative torques with the magnetic field. However, recent theoretical work has shown that under specific conditions polarization may arise from self-scattering of thermal emission and by radiation fields from a nearby stellar object. Aims. We use multi-frequency polarization observations of a circumbinary disk to investigate how the polarization properties change at distinct frequency bands. Our goal is to discern the main mechanism responsible for the polarization through comparison between our observations and model predictions for each of the proposed mechanisms. Methods. We used the Atacama Large Millimeter/submillimeter Array to perform full polarization observations at 97.5 GHz (Band 3), 233 GHz (Band 6) and 343.5 GHz (Band 7). The ALMA data have a mean spatial resolution of 28 AU. The target is the Class I object BHB07-11, which is the youngest object in the Barnard 59 protocluster. Complementary Karl G. Jansky Very Large Array observations at 34.5 GHz were also performed and revealed a binary system at centimetric continuum emission within the disk. Results. We detect an extended and structured polarization pattern that is remarkably consistent between the three bands. The distribution of polarized intensity resembles a horseshoe shape with polarization angles following this morphology. From the spectral index between Bands 3 and 7, we derived a dust opacity index beta similar to 1 consistent with maximum grain sizes larger than expected to produce self-scattering polarization in each band. The polarization morphology and the polarization levels do not match predictions from self-scattering. On the other hand, marginal correspondence is seen between our maps and predictions from a radiation field model assuming the brightest binary component as main radiation source. Previous molecular line data from BHB07-11 indicates disk rotation. We used the DustPol module of the ARTIST radiative transfer tool to produce synthetic polarization maps from a rotating magnetized disk model assuming combined poloidal and toroidal magnetic field components. The magnetic field vectors (i.e., the polarization vectors rotated by 90 degrees) are better represented by a model with poloidal magnetic field strength about three times the toroidal one. Conclusions. The similarity of our polarization patterns among the three bands provides a strong evidence against self-scattering and radiation fields. On the other hand, our data are reasonably well reproduced by a model of disk with toroidal magnetic field components slightly smaller than poloidal ones. The residual is likely to be due to the internal twisting of the magnetic field due to the binary system dynamics, which is not considered in our model.
引用
收藏
页数:8
相关论文
共 37 条
[1]   Planck intermediate results XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds [J].
Ade, P. A. R. ;
Aghanim, N. ;
Alves, M. I. R. ;
Arnaud, M. ;
Arzoumanian, D. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Battaner, E. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Bernard, J-P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bonavera, L. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bracco, A. ;
Burigana, C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Catalano, A. ;
Chiang, H. C. ;
Christensen, P. R. ;
Colombo, L. P. L. ;
Combet, C. ;
Couchot, F. ;
Crill, B. P. ;
Curto, A. ;
Cuttaia, F. ;
Danese, L. ;
Davies, R. D. ;
Davis, R. J. ;
de Bernardis, P. ;
de Rosa, A. ;
de Zotti, G. ;
Delabrouille, J. ;
Dickinson, C. ;
Diego, J. M. ;
Dole, H. ;
Donzelli, S. ;
Dore, O. ;
Douspis, M. .
ASTRONOMY & ASTROPHYSICS, 2016, 586
[2]   An accurate determination of the distance to the Pipe nebula [J].
Alves, F. O. ;
Franco, G. A. P. .
ASTRONOMY & ASTROPHYSICS, 2007, 470 (02) :597-U53
[3]   Molecular outflow launched beyond the disk edge [J].
Alves, F. O. ;
Girart, J. M. ;
Caselli, P. ;
Franco, G. A. P. ;
Zhao, B. ;
Vlemmings, W. H. T. ;
Evans, M. G. ;
Ricci, L. .
ASTRONOMY & ASTROPHYSICS, 2017, 603
[4]   THE MAGNETIC FIELD IN THE NGC 2024 FIR 5 DENSE CORE [J].
Alves, Felipe O. ;
Girart, Josep M. ;
Lai, Shih-Ping ;
Rao, Ramprasad ;
Zhang, Qizhou .
ASTROPHYSICAL JOURNAL, 2011, 726 (02)
[5]   Interstellar Dust Grain Alignment [J].
Andersson, B-G ;
Lazarian, A. ;
Vaillancourt, John E. .
ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, VOL 53, 2015, 53 :501-539
[6]   The Spitzer c2d survey of nearby dense cores. IV. Revealing the embedded cluster in B59 [J].
Brooke, Timothy Y. ;
Huard, Tracy L. ;
Bourke, Tyler L. ;
Boogert, A. C. Adwin ;
Allen, Lori E. ;
Blake, Geoffrey A. ;
Evans, Neal J., II ;
Harvey, Paul M. ;
Koerner, David W. ;
Mundy, Lee G. ;
Myers, Philip C. ;
Padgett, Deborah L. ;
Sargent, Anneila I. ;
Stapelfeldt, Karl R. ;
van Dishoeck, Ewine F. ;
Chapman, Nicholas ;
Cieza, Lucas ;
Dunham, Michael M. ;
Lai, Shih-Ping ;
Porras, Alicia ;
Spiesman, William ;
Teuben, Peter J. ;
Young, Chadwick H. ;
Wahhaj, Zahed ;
Lee, Chang Won .
ASTROPHYSICAL JOURNAL, 2007, 655 (01) :364-374
[7]   ALMA's Polarized View of 10 Protostars in the Perseus Molecular Cloud [J].
Cox, Erin G. ;
Harris, Robert J. ;
Looney, Leslie W. ;
Li, Zhi-Yun ;
Yang, Haifeng ;
Tobin, John J. ;
Stephens, Ian .
ASTROPHYSICAL JOURNAL, 2018, 855 (02)
[8]   Radiative torques on interstellar grains .2. Grain alignment [J].
Draine, BT ;
Weingartner, JC .
ASTROPHYSICAL JOURNAL, 1997, 480 (02) :633-646
[9]  
Dzib SA, 2013, REV MEX ASTRON ASTR, V49, P345
[10]   Comparing star formation models with interferometric observations of the protostar NGC 1333 IRAS 4A I. Magnetohydrodynamic collapse models [J].
Frau, P. ;
Galli, D. ;
Girart, J. M. .
ASTRONOMY & ASTROPHYSICS, 2011, 535