Face recognition based on deep learning techniques and image fusion

被引:2
作者
Chmielinska, Jolanta [1 ]
Jakubowski, Jacek [1 ]
机构
[1] Wojskowa Akad Tech, Wydzial Elektroniki, Ul Kaliskiego 2, PL-00908 Warsaw, Poland
来源
PRZEGLAD ELEKTROTECHNICZNY | 2019年 / 95卷 / 11期
关键词
face recognition; convolutional networks; data fusion;
D O I
10.15199/48.2019.11.39
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper presents the results of the original research on the application of a neural network using deep learning techniques in the task of identity recognition on the basis of facial images acquired in both visual and thermal radiation ranges. In the research, the database containing images acquired in various but controlled conditions was used. On the basis of the obtained results it can be established that both investigated spectral ranges provide distinctive and complementary details about the identity of an examined person.
引用
收藏
页码:150 / 154
页数:5
相关论文
共 10 条
  • [1] [Anonymous], 2015, Journal of Computational and Graphical Statistics
  • [2] Bengio Y, 2018, DEEP LEARNING SYSTEM
  • [3] Chmielinska J., 2014, PRZ ELEKTROTECHNICZN, V90, P205
  • [4] Coskun M, 2017, 2017 INTERNATIONAL CONFERENCE ON MODERN ELECTRICAL AND ENERGY SYSTEMS (MEES), P376, DOI 10.1109/MEES.2017.8248937
  • [5] Thermal Infrared Face Recognition: A review
    Kakkirala, Krishna Rao
    Chalamala, Srinivasa Rao
    Jami, SantoshKumar
    [J]. 2017 19TH UKSIM-AMSS INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELLING & COMPUTER SIMULATION (UKSIM), 2017, : 55 - 60
  • [6] Schroff F, 2015, PROC CVPR IEEE, P815, DOI 10.1109/CVPR.2015.7298682
  • [7] Transfer Learning for Visual Categorization: A Survey
    Shao, Ling
    Zhu, Fan
    Li, Xuelong
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (05) : 1019 - 1034
  • [8] Sop Deffo LL, 2018, INT J ADV COMPUT SC, V9, P240
  • [9] DeepFace: Closing the Gap to Human-Level Performance in Face Verification
    Taigman, Yaniv
    Yang, Ming
    Ranzato, Marc'Aurelio
    Wolf, Lior
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 1701 - 1708
  • [10] Wu Z, 2016, PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON OPTOELECTRONICS AND IMAGE PROCESSING (ICOIP 2016), P6, DOI 10.1109/OPTIP.2016.7528489