Best Proximity Points of MT-Cyclic Contractions with Property UC

被引:52
作者
Aydi, Hassen [1 ,2 ]
Lakzian, Hosein [3 ]
Mitrovic, Zoran D. [4 ]
Radenovic, Stojan [5 ]
机构
[1] Ton Duc Thang Univ, Nonlinear Anal Res Grp, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[3] Payame Noor Univ, Dept Math, Tehran, Iran
[4] Univ Banja Luka, Fac Elect Engn, Patre 5, Banja Luka, Bosnia & Herceg
[5] Univ Belgrade, Fac Mech Engn, Kraljice Marie 16, Belgrade, Serbia
关键词
Best proximity point; cyclic map; MT-cyclic orbital contraction; property UC; THEOREMS; EXISTENCE; CONVERGENCE; ALPHA;
D O I
10.1080/01630563.2019.1708390
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We initiate the notion of generalized - cyclic contraction mappings with respect to an auxiliary function and investigate the existence of a best proximity point of such mappings in the setting of metric spaces. We also prove the uniqueness of a fixed point, when we assume an additional condition, named as: property UC. Moreover, we discuss the existence and uniqueness of a fixed point of -cyclic orbital contractions in the context of (b-metric) metric spaces.
引用
收藏
页码:871 / 882
页数:12
相关论文
共 26 条
[1]   Convergence and existence results for best proximity points [J].
Al-Thagafi, M. A. ;
Shahzad, Naseer .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (10) :3665-3671
[2]  
Aydi H, 2016, J NONLINEAR SCI APPL, V9, P5202
[3]   On common best proximity points for generalized α - ψ-proximal contractions [J].
Aydi, Hassen ;
Felhi, Abdelbasset ;
Karapinar, Erdal .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05) :2658-2670
[4]   Best proximity points for cyclic Kannan-Chatterjea-Ciric type contractions on metric-like spaces [J].
Aydi, Hassen ;
Felhi, Abdelbasset .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05) :2458-2466
[5]   Best proximity points of generalized almost ψ-Geraghty contractive non-self-mappings [J].
Aydi, Hassen ;
Karapinar, Erdal ;
Erhan, Inci M. ;
Salimi, Peyman .
FIXED POINT THEORY AND APPLICATIONS, 2014,
[6]  
Bakhtin I., 1989, Functinal Analysis Ulianowsk Gos. Ped. Inst, V30, P26, DOI DOI 10.1039/AP9892600037
[7]  
Czerwik S., 1993, ACTA MATH INF U OSTR, V1, P5
[8]   Best proximity and fixed point results for cyclic multivalued mappings under a generalized contractive condition [J].
De la Sen, Manuel ;
Singh, Shyam Lal ;
Gordji, Madjid Eshaghi ;
Ibeas, Asier ;
Agarwal, Ravi P. .
FIXED POINT THEORY AND APPLICATIONS, 2013,
[9]   Nonlinear conditions for the existence of best proximity points [J].
Du, Wei-Shih ;
Lakzian, Hossein .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
[10]   On coincidence point and fixed point theorems for nonlinear multivalued maps [J].
Du, Wei-Shih .
TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (01) :49-56