A Hardy-type inequality in two dimensions

被引:3
作者
Kumar, Suket [1 ]
机构
[1] Univ Delhi, Dept Math, Delhi 110007, India
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2009年 / 20卷 / 02期
关键词
Hardy inequality; Hardy operator; Strong-type inequality; Weak-type inequality; Boundedness of operators; WEIGHTED NORM INEQUALITIES;
D O I
10.1016/S0019-3577(09)80012-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Necessary and sufficient conditions are given for a weighted norm inequality for the sum of two-dimensional Hardy-type integral operators with not necessarily non-negative coefficients.
引用
收藏
页码:247 / 260
页数:14
相关论文
共 50 条
[41]   A unified approach to dynamic Hardy-type and Copson-type inequalities [J].
Saker, Samir H. ;
Mahmoud, Ramy R. ;
Abdo, Khadega R. ;
Krnic, Mario .
BULLETIN DES SCIENCES MATHEMATIQUES, 2022, 174
[42]   Hardy-type inequalities for Dunkl operators with applications to many-particle Hardy inequalities [J].
Velicu, Andrei .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (06)
[43]   GENERAL HARDY-TYPE INEQUALITIES WITH NON-CONJUGATE EXPONENTS [J].
Cizmesija, A. ;
Krnic, M. ;
Pecaric, J. .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2011, 37 (03) :77-108
[44]   Hardy-type inequalities on a half-space in the Heisenberg group [J].
Liu, Heng-Xing ;
Luan, Jing-Wen .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
[45]   On a Hardy Type General Weighted Inequality in Spaces Lp(·) [J].
Farman I. Mamedov ;
Aziz Harman .
Integral Equations and Operator Theory, 2010, 66 :565-592
[46]   On a Hardy Type General Weighted Inequality in Spaces Lp(.) [J].
Mamedov, Farman I. ;
Harman, Aziz .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 66 (04) :565-592
[47]   Hardy-type inequalities on a half-space in the Heisenberg group [J].
Heng-Xing Liu ;
Jing-Wen Luan .
Journal of Inequalities and Applications, 2013
[48]   HARDY-TYPE OPERATORS IN LORENTZ-TYPE SPACES DEFINED ON MEASURE SPACES [J].
Sun, Qinxiu ;
Yu, Xiao ;
Li, Hongliang .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (03) :1105-1132
[49]   Hardy-Type Operators in Lorentz-Type Spaces Defined on Measure Spaces [J].
Qinxiu Sun ;
Xiao Yu ;
Hongliang Li .
Indian Journal of Pure and Applied Mathematics, 2020, 51 :1105-1132
[50]   A HARDY INEQUALITY FOR THE GRUSHIN TYPE OPERATORS [J].
Zhu, Li .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (04) :923-930