A Hardy-type inequality in two dimensions

被引:3
作者
Kumar, Suket [1 ]
机构
[1] Univ Delhi, Dept Math, Delhi 110007, India
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2009年 / 20卷 / 02期
关键词
Hardy inequality; Hardy operator; Strong-type inequality; Weak-type inequality; Boundedness of operators; WEIGHTED NORM INEQUALITIES;
D O I
10.1016/S0019-3577(09)80012-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Necessary and sufficient conditions are given for a weighted norm inequality for the sum of two-dimensional Hardy-type integral operators with not necessarily non-negative coefficients.
引用
收藏
页码:247 / 260
页数:14
相关论文
共 13 条
[1]  
Appell J., 1995, ANALYSIS, V15, P91, DOI DOI 10.1524/ANLY.1995.15.1.91
[2]  
HEINIG H. P., 2001, Georgian Math. J., V8, P69
[3]   WEIGHTED NORM INEQUALITIES FOR CLASSES OF OPERATORS [J].
HEINIG, HP .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1984, 33 (04) :573-582
[4]  
Kufner A., 2003, WEIGHTED INEQUALITIE
[5]   The prehistory of the hardy inequality [J].
Kufner, Alois ;
Maligranda, Lech ;
Persson, Lars-Erik .
AMERICAN MATHEMATICAL MONTHLY, 2006, 113 (08) :715-732
[6]   WEIGHTED NORM INEQUALITIES FOR THE FOURIER-TRANSFORM [J].
MUCKENHOUPT, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 276 (02) :729-742
[7]  
Muckenhoupt B., 1979, Proc. Symp. in Pure Math, V34, P69
[8]  
MUCKENHOUPT B, 1982, NOT AM MATH SOC, V29, P538
[9]  
Persson, 2007, HARDY INEQUALITY ITS
[10]  
SAWYER E, 1985, STUD MATH, V82, P1